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INTRODUCTION general, are relatively simple systems and much
easier to analyze than are complex living sys-The recognition in the 1940s that bacterio- tems. The study of bacteriophages has contrib-

phages could help to elucidate the molecular uted much to the science of virology, since most
basis of heredity (49) has initiated exceedingly phenomena originally observed in phage-in-
successful development. Phages, and viruses in fected bacteria were later on also discovered in
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the interactions between eucaryote viruses and
their host cells. The substantial technical ad-
vance during the past years has made it possible
to explore molecular events in complex eucar-
yote cells and has established the intrinsic equiv-
alence of pro- and eucaryote molecular genetics
as well as a number of differences between them.
The accessibility of eucaryote systems to molec-
ular biological research does not, however, war-
rant the conclusion that the days of bacterio-
phage are over. Bacteriophages remain impor-
tant models for virus-cell interaction: current
research on bacteriophages is devoted to such
problems as the mechanisms of virus-effected
killing of cells, the integration and excision of
viral genes in and from host genomes, deoxyri-
bonucleic acid (DNA) modification and restric-
tion, the reconstitution of the whole process of
DNA replication in vitro, and solving the puzzle
of temporal gene expression; these topics are of
supreme interest for animal virology, too. In
addition, bacteriophages have gained great sci-
entific and economic prominence as vehicles for
experimental gene transfer.

Bacteriophages T3 and T7 belong to the class-
ical T series of bacteriophages (94). Not only the
traditional Escherichia coli laboratory strains
but also certain strains of Shigella sonnei (140,
164), Salmonella typhimurium (43), Klebsiella
pneumoniae (379, 424), and Pasteurella (165)
are permissive hosts. However, all essential
knowledge about T3 and T7 virus-host interac-
tions and the molecular biology of T3 and T7
was acquired in the E. coli system.

In writing this review it was a great advantage
that we could rely on the excellent reviews of
Hausmann (164, 165), McCorquodale (306), and
Studier (484, 489), and, while concentrating on
new developments, we shall refer to the 1976
review of Hausmann (165) for most of the work
published up to that time. Faced with an ava-
lanche of new papers, we are aware of the fact
that the wealth of information can no longer be
adequately presented in a condensed review;
there is by now enough material to fill a book
exclusively dedicated to these phages, a book
like the modern classic The Bacteriophage
Lambda (181). Therefore, we were forced to
select topics for thorough treatment at the ex-
pense of others which were only briefly sum-
marized.

GENERAL PROPERTIES
The Viruses and Their Growth Cycle
The principal features of the T3 and T7

phages' structure and growth cycle have been
thoroughly reviewed (164, 165, 306, 484, 489) and
are briefly summarized here. The virion consists

of a polyhedral nucleocapsid 50 nm in diameter
to which a simple, noncontractile tail 20 nm long
is attached which is capable of adsorbing to
bacterial cells. The genome ejected through this
tail is a single molecule oflinear double-stranded
DNA with a molecular weight of about 25 x 106,
equivalent to approximately 40,000 base pairs.
(The molecular weight of T7 DNA has recently
been determined with greater accuracy to be
26.4 x 10" to 26.5 x 10'f [76, 482]. According to
a recent estimation, T3 DNA contains 38.74
kilobases [17], which is equivalent to a molecular
weight of 25.6 x 106.) The DNA consists of the
usual four nucleotides, the guanine plus cytosine
content being similar to that of the E. coli host
cell. The DNA is terminally redundant, but not
circularly permuted, and codes for about 30 pro-
teins. Gene expression of the phages is relatively
simple, thanks to the exclusive transcription of
the parental genome(s) and only of the heavy
DNA strand thereof, as well as to the strictly
sequential reading of the genes in the order in
which they are arranged on the phage chromo-
some.
Phage development involves a number of reg-

ulated steps effecting shutoff of host and early
phage functions, the degradation of the host
genome into nucleotides, and their highly eco-
nomical reutilization in the rapid synthesis of
phage progeny DNA.
On infection of typical permissive E. coli

strains under standard conditions, lysis begins at
12 to 15 min (37°C) or 20 to 25 min (300C) and
an average of 200 progeny phage are released
per cell.
T3 and T7 are closely related, and their DNA

molecules hybridize extensively; however, there
are several functionally important nonhomolo-
gous regions. One of the salient differences be-
tween the two phages is the coding of an aden-
osylmethionine hydrolase fSAMase) by gene 0.3
of T3, but not by T7 (see Adenosylnethionine
Hydrolase). Another nonhomologous region lies
within gene 1, affecting the molecular weight
and the template specificity of the ribonucleic
acid (RNA) polymerase (RNA nucleotidyltrans-
ferase) (see Transcription). Differences between
the two phages also show up in gene 17, where
they determine the nonidentical antigenicities
and adsorption specificities of the tail fiber pro-
teins (see Adsorption and DNA Injection).

Restriction Analysis of Phage
Deoxyribonucleic Acid (DNA)

The utility of sequence-specific restriction en-
donucleases for physical mapping and sequence
analysis of genomes and for gene cloning (272,
327, 328, 394, 395, 466) has had its impact also
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on the elucidation of the structure and function
of the T3 and T7 phage genomes. After the
initial Hindu digestion performed by Kelly and
Smith (220), and extension of this work (201,
259), several other restriction endonucleases
were introduced into the analysis of T7 DNA
(50, 147, 148, 275, 276, 300, 302, 307, 355, 494).
The most extensive compilation of restriction
analyses of the T7 genome was published by
Rosenberg et al. (405). T7 DNA bears no rec-
ognition sites for the enzymes BamHI, EcoRI,
HindIII, PstI, PvuI, Sall, SmaI, SstI, SstH, and
XhoI; one to six recognition sites exist for AvaI,
BalI, Bcll, Bgll, Bgi, BstEH, BstNI, ClaI,
DpnII, KpnI, PvuIl, XbaI, XholH (405), and
EcoRII (W. Wackernagel, personal communi-
cation); and the DNA is cut at several sites by
AccI, AluI, AvaH, HaeII, HaeIII, HgaI, HgiAI,
HhaI, HindI, Hinfl, HpaI, HpaHl, HphI, MboH,
Mnll, Sau96I, TaqI, ThaI (405), and BsuR (148).
After initial experiments with HapIl, HgaI,
HinHI (502), and HpaI (490), a detailed restric-
tion map of T3 DNA has now been established
by Bailey et al. (17). T3 DNA possesses no
recognition sites for BamHI, Bgll, EcoRI, PstI,
PvuIH, Sall, SmaI, SstH, and XhoI; one to six
sites for AvaI, BgiiI, HindI, KpnI, and XbaI;
and several sites for HpaI, MboI (17), Hapll,
and HinHI (502). An alignment of the T3 and
T7 restriction maps reveals substantial differ-
ences (17, 405). Since differences also exist be-
tween laboratory strains of the same phage spe-
cies, Studier (490) recommends a comparison of
restriction patterns of phage from various labo-
ratories in order to test their identity.

Physical maps of the early T7 genome region
were established (147, 276, 300, 494), and certain
genome fragments were isolated to study their
interaction with E. coli and T7 RNA polymerase
and for hybridization mapping of phage messen-
ger RNA (mRNA) (200, 212, 217, 300, 302). In
addition, restriction fragments were used for se-
quence analysis of T7 promoters (304, 336, 338,
404, 456).

Cloning of DNA fragments with the aid of
plasmid or virus vehicles has opened new per-
spectives for the investigation of the molecular
biology ofT3 and T7. Campbell et al. (50) cloned
some late and early T7 genes on the plasmid
pMB9; in addition, the origin ofDNA replication
(51, 356, 423a) and promoter regions were cloned
(346, 347, 435). Recently, the T7 gene 0.3 (ocr+)
has been inserted into a bacteriophage lambda
vector (363). Tsujimoto and co-workers took
advantage of the fact that T7 wild-type DNA
lacks EcoRI recognition sites to study its recom-
bination with DNA of an EcoRI-sensitive T7
mutant (341, 508-510).
T7 DNA has a lasting place in the history of

science, as it was the first target for a sequence-
specific restriction endonuclease (HindII) tested
in 1970 by Smith and co-workers (220, 467).
From then on, type II restriction enzymes were
used as tools for molecular biology (272, 327,
394, 466). It is curious that the interaction of
HindIl with T7 DNA is of no significance in
vivo, since T7 does not even adsorb to the
HindII-producing bacterium Haemophilus in-
fluenzae Rd (D. H. Kruger and M. Hartmann,
unpublished data).

EARLY VIRUS-CELL INTERACTIONS
Adsorption and DNA Injection

The Host range of a virus is defined as com-
prising those hosts which permit a productive
viral growth cycle. We shall use this term in the
more restricted sense of cells to which the virus
can adsorb. The ability of the virus to adsorb
and the presence or absence of virus receptors
on a cell surface constitute the first level of virus-
host interaction on which the establishment of
infection is decided. The physical chemistry of
virus adsorption has been largely neglected by
current research, so there is little progress to
report. The receptors for T3 and T7 consist of
lipopolysaccharide areas in the outer membrane
of the cell wall (38, 271, 373, 521). The tail fiber
protein encoded by gene 17 is the main deter-
minant of phage adsorption specificity (206, 207;
0. G. Issinger, Ph.D. thesis, University of Frei-
burg, Freiburg, Federal Republic of Germany,
1973).
T3 and T7 genes 17 display a high degree of

homology (89), which explains the related host
ranges ofthese phages. The described host range
of T7 is, however, broader than that of T3, since
T7-resistant strains of E. coli are also resistant
to T3, but not necessarily vice versa (94, 148,
159). Recent publications of Studier (490) and
Kruger et al. (246) describe the resistance of E.
coli K-12 Wisconsin (W) strains to T3 as op-
posed to their permissiveness for T7 infection;
T3 host range mutants (T3hw) were isolated
which adsorb to E. coli W as well as T7 (246).
Another distinction between T3 and T7 is that
the latter adsorbs with a higher rate to E. coli B
cells (171; H. Beier, Ph.D. thesis, University of
Freiburg, Freiburg, Federal Republic of Ger-
many, 1973).
Corresponding to the similarity of the phage

receptors, antisera to T3 and T7 are cross-reac-
tive (3, 172, 206, 246; Issinger, Ph.D. thesis). The
adsorption properties and serologies of T3 and
T7 seem to be multifactorially determined, since
the T3hw mutants adsorb to E. coli W, like T7,
but retain their typical T3 adsorption pattern on
different E. coli B strains (246, 249). The T3hw
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mutation also alters the serological specificity of
the phage, rendering it intermediate between
those of T3 and T7 (246).

Triggered by cell-virus receptor interaction,
the phage particle injects its DNA into the cell,
beginning with the genetic left end (357, 417),
the transciption of which appears to be the
precondition for the complete injection of the
genome (544).

Nonclassical Modification of Viruses
It has been known for a long time that the

ability ofa phage to grow on a certain host strain
can be dependent on a modification ofthe phage
received in the previous host cell (277). When
the modification is disadvantageous, phage
growth on the new host is restricted. The crite-
rion distinguhing in vivo modification and re-
striction (M/R) from mutational effects is the
demonstration of reversible, host-dependent
changes in the efficiency of plating of the phage
(37, 277). Up to now, host-controlled M/R of
bacteriophages has always been connected to
modification versus cleavage of phage DNA (see
Interactions with the DNA Modification and
Restriction Systen of the Host: Functions of
Gene 0.3). Kriiger and co-workers (247-250)
proved that, in addition, a totally different mech-
anism of host-dependent M/R exists which in-
fluences the adsorption ability ofthe phages and
is caused by protein modification. In contrast to
the "classical" M/R of DNA, this phenomenon
was termed "nonclassical" M/R (247-250).
Such a nonclassical M/R was observed when

T7 and SAMase-negative T3 derivatives were

passaged on different E. coli B srains (250). The
efficiency of plating of the phage varies from
0.01 to 1.0, dependent on the host strain on

which the phage were last grown. These geneti-
cally unaltered phage carrying different non-

classical modifications also differ antigenically
(K. K. Gachechiladze, D. H. Kriiger, N. S. Bal-

ardzhishvili, S. Hansen, H. A. Rosenthal, and T.
G. Chanishvili, submitted for publication).
A second case of nonclasical M/R is the

behavior ofT3 towards E. coli W1655 (248,249).
Independent of the fact that T3hw host range
mutants appear at a frequency of 10-8 in the
phage population (see Adsorption and DNA In-
jection), the efficiency of plating ofT3 wild-type
phage assumes values between 10-7 and 10-1,
depending on the preceding host. These remark-
able differences in efficiency of plating can be
attributed quantitatively to different adsorption
values (248, 249).
To our knowledge, nonclassical modification

of T3 and T7 bacterial viruses constitutes a

novel phenomenon in virology. The improve-
ment of adsorption to cells of the same type and
the impairment of adsorption to other cell types
caused by modification may be related to the
long-disputed mechanisms of cell and tissue
adaptation of animnl viruses which cannot be
reduced to mutant selection alone (see Fenner
et al. [123] p. 317-318). In addition, nonclassical
M/R could interfere with lysotyping of bacteria
(247).

REGULATION OF GENE EXPRESSION
Transcription

Transcription of phages T3 and T7 proceeds
in distinct phases (Fig. 1): early transcription
(class I genes), performed by the host RNA
polymerase, succeeded by late transcription
(class II and class HI genes), carried out by the
phage-specified RNA polymerase (484).
Early tanscription. Early transcription

commences at the left end of the genome, where
E. coli RNA polymerase recognizes three adja-
cent promoters, Al, A2, and A3, in vivo (112,
318). The reader is guided to the 1979 review of
Rosenberg and Court (406) for thorough infor-
mation about promoter recognition. All early T7
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FIG. 1. Outline of T7genome organization. Data were compiledfrom references 143, 144, 165, 217, 302, and
484. Forphage-coded proteins, see Table 4.
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promoters (Table 1), with the exception of one
minor promoter (D or AO) set off twanscription
in left-to-right direction to copy the heavy strand
of viral DNA (471, 499). Promoters for bacterial
RNA polymerases have in common homologies
in functionally important regions which are
strongly conserved in evolution (136, 406, 523)
(Table 2). The "-35 region" is implicated in
initial recognition, and the "Pribnow box" (374,
375, 427) probably tiggers local unwinding of
the double strand (444). By elegant chemical
DNA modification techniques, Siebenlist (457)
and Siebenlist and Gilbert (458) identified the
minimal unwound promoterA3 sequence (Table
2) and the contact points of the -35 region and
the Pribnow box with E. coli RNA polymerase.
It has been pointed out that the C promoter has
the lowest homology to an "average promoter"
constructed from superposition ofseveral known
promoter sequences, despite the fact that it is
relatively strong under certain in vitro condi-
tions (see discussions by McConnell [304] and
Pfeffer et aL [362]).
The properties of purified E. coliRNA polym-

erase as well as its interaction with DNA have
been reviewed extensively (20, 68, 69, 136, 211,
262, 543). The concentrations and the specificity

TABLE 1. Positions ofpromoters for E. coli RNA
polymerase on T7DNA

Promotee Position (% Prceding Copied DNA
of genome)n gene strand'

D(= AO) 0.581 L
Al 1.221 0.3 H
A2 1.539 0.3 H
A3 1.834 0.3 H
B 3.728 0.7 H
C 7.821 1 H
E 92.123 19 H

Designation according to Stahl and Chamberlin
(471) and Studier et al. (494). These promoters are
numbered I through VII by Koller et aL (231).

b Data from Koller et aL (231) determined electron
microscopically. Errors estimated by these authors are
0.056 to 0.22% of genome length.
'L Light; H, heavy.

of bacterial RNA polymerase depend on the
physiological state of the cell (2, 73, 130, 219,
274, 329, 392, 506, 507, 543). Since the role of the
minor T3 and T7 promoters has not been firmly
established, it would be interesting to know
whether variant E. coli RNA polymerases are
capable of recognizing alternative promoters on
phage DNA.
The binding of E. coli RNA polymerase to T7

DNA has been explored by electron microscopy
(36, 74, 87, 88, 232, 370, 525) and with the aid of
isolated restriction fagments (148, 200, 202,
276). hnprovements of the technique enabled
Koller et aL (231) to reliably localize the minor
promotersB throughE (Table 1). These authors
summarized and unified previously published
data on the location of early T7 promoters.
Remaining differences, e.g., seven binding sites
identified by Koller et aL (231) as opposed to
eight found by Hinkle and Chamberlin (190),
may be reconciled by the work of Kadesch et al.
(212, 213) proving the existence of tight-binding,
promoter-like polymerase-DNA complexes dis-
tributed nonrandomly over the DNA molecule.
The relative "strengths" of class I promoters
estimated by three independent methods rise in
the sequence AO <:: A3 c A2 < Al (536).
The following steps precede initiation of

mRNA synthesis: binding of RNA polymerase
holoenzyme at "nonspecific" sites which might
serve as storage stretches (426), diffusion to and
recognition ofpromoters, conformational change
of the enzyme, and melting of about 10 base
pairs (87, 383, 457) of the promoter. At this stage
the complex has become relatively stable to
rifampin, heparin, polyinosinate, and denatured
DNA (20). The rate of attack by rifampin (471)
or heparin (362) depends on polymerase confor-
mation, which, in turn, is determined by the
structure of the respective promoter. The sen-
sitivity of such initiation complexes in vitro does
not correspond to the strength of the promoter
(362). The actual initiation reaction is the for-
mation of a dinucleoside tetraphosphate. Dinu-
cleoside monophosphates stimulate rapid RNA
synthesis in vitro (87, 289, 318, 339), which,

TABLE 2. Sequences ofpromoters for E. coli RNA polymerase on phage T7DNA'

Sequence (sense strand, 5' -) 3')

Al AAAAGAGTA}TTGACiTTAAAGTC-TAAC CTA TAG GATACTT ACAGCCATCGAGAGGGACACGGCG
A2 AAACAGGTA4TTGACIAACATGAAGTAACATGCAG TAAGATA CAAATCGCTAGGTAACACTAGCAG
A3 ACAAAACGGTTGATCAACATGAAGTAA-ACACATGAAACGACAGTGAGTC
C ATAAGCAACI'TGAC,GCAATGTTAATGGrGC-TGA AGTCT- ATCTTA

Promoter sequences were compiled from references 374 (A3), 456 (Al, A2, and A3), and 304 (C). A or Q indicates the first

copied nucleotide; the soLid box is Pribnow box, and the dotted box encloses the -35 region. Indicated homologies correspond
to average promoter sequences (304, 404, 406, 456). Dashes (-) in Al, A3, and C were inserted to achieve exact superposition
of homologous regions. The wavy line indicates the minimal unwound sequence (457).

Pro
moter
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however, does not initiate at the in vivo point
(see references in the footnote to Table 2). Using
purified E. coli RNA polymerase plus adenosine
5'-triphosphate and uridine 5'-triphosphate,
Nierman and Chamberlin (330) succeeded in
synthesizing T7 mRNA correctly initiated at the
Al promoter with pppApU, the natural 5' ter-
minus ofAl mRNA (241).

In the elongation complex the DNA region
protected by E. coli RNA polymerase is shorter
(about 26 nucleotides in the coding strand
[401]) than in the promoter complex (about 40
nucleotides [374, 375]).

Five early transcripts are made in vivo (39, 40,
112, 113, 177,462,486,494,497):0.3,0.7, 1.0, 1.1,
and 1.3 mRNA (Fig. 2). The synthesis of T3 and
T7 early messengers terminates either in a rho-
factor-independent manner (226) at the major
termination site TEl, located at 18.9% (376,494)
on the T7 genome, or at terminator sites behind
transcriptons 0.3, 0.7, and 1.0 in a rho-dependent
process, as shown in vitro (84, 86) as well as in
vivo (177). Adhya et al. (6) have identified two
rho-dependent termination sites at 8% (after
gene 0.7) and 15% (after gene 1) ofT7 DNA. For
details on mRNA termination, we refer the
reader to the review of Adhya and Gottesmann
(5). Reinitiation (318) at the beginnings of genes
0.7 and 1.0 (86)-supported by the existence of
promoters at these positions (Table 1 and Fig.
2)-could contribute to the pattern of the gene
expression.
The major terminator TEl brings most of the

transcribing complexes of T7 to a halt in vivo
and in vitro (226, 318, 484). The same applies for
T3 early termination in vivo (111, 226), but

apparently not in vitro (88, 111, 226). TE1 rec-
ognition in vivo is supposed to be promoted by
the phosphorylation of the host polymerase f8
and ff' subunits by the T7 0.7 gene product
(gp0.7) (352, 368, 378, 410). Phosphorylation also
renders the enzyme unable to reinitiate tran-
scription of host and viral DNAs (546) (see
Shutoff of Host and Class I and Class II Phage
Functions). Read-through early mRNA termi-
nates at site TE2 (30.1%) (318, 360, 462). Se-
quence analyses of the TE1 area of T7 DNA
were recently published (116, 376).
Late transcription. Late transcription be-

gins about 4 min (37°C) or 6 min (300C) post-
infection. Besides genes 1.1 to 1.3, the overlap
region between class I and class II genes, the
latter include genes 1.7 to 10. The first class II
gene, immediately following TE1, has only been
identified by DNA sequence analysis and pre-
cedes gene 1.7 (34, 116). Genes 7 and 10 are
transcribed from both class II and class III pro-
moters (303) (Fig. 1). By 1979 the primary struc-
tures of 10 late T7 promoters were elucidated
(Table 3). These structures are shorter and mu-
tually more homologous than promoters for bac-
terial polymerases (see Table 2). Regions of hy-
phenated twofold symmetry discovered in the
70% promoter by Oakley and Coleman (336)
occur in all sequenced promoters and may con-
tribute to promoter strength, since they are less
pronounced in the class II promoters (Table 3).
Class II promoters appear weak in vitro (22, 143,
144, 332, 463) but not in vivo (302, 346). Effective
and specific transcription from class II pro-
moters in vitro can only be accomplished by
using restriction fragments lacking class III pro-
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FIG. 2. Early region ofphage T7 and its expression. Data compiled from references 34, 108, 112, 116, 217,
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T3 AND T7 VIRUS-HOST CELL INTERACTIONS

TABLE 3. Positions and sequences ofpromoters for T7RNA polymerase on T7DNA
Position (% of mRNA species in

genome) vitroSequence (sese strd, Reference(s)

II 14.55 VII CAATACGACTCACTATAGAGGGA 338,355,404,494
II 14.75 VII TAATACGACTCACTATAGGAGAA 355,418
II 15.95 VII (?) TAATACGACTCAGTATAGGGACA 116,355
II 19.36 VIII TAATACGACTCACTAAAGGAGGT 34,116
II 19.65 VIII TAATACGACTCACTAAAGGAGAC 34,116
II 33.3 Ib (?)(in vivo) AATACGACTCACTAAAGGAXXC Carter et al.
II 34.75 Dlb (?)(in vivo) TATTCGACTCACTATAGGAGAT Carter et al.

III 46.5 IIL TAATACGACTCACTATAGGGAGA 404
III 55 IV TAATACGACTCACTATAGGGAGA 404
III 57 V TAATACGACTCACTATAGGGAGA 404
III 70 II (?) ACATACGACTCACTATAGGGAGA 338
III 87 HIb TAATACGACTCACTATAGGGAGA 404

amRNA's are designated according to McAllister and McCarron (302), Kassavetis and Chamberlin (217), and
Pachl and Young (346).

b The wavy line indicates the unwound sequence (481). The position of the initiation nucleotide (A) is
questionable (see references 32, 34, 355, 404, 481).CA. D. Carter et al, Abstr. Miami Winter Symp., 12:103.

moters (217), indicating that a special mecha-
nism exists in vivo to activate class II promoters.

Since the first class II promoters are located
immediately adjacent to gene 1, coding for phage
RNA polymerase (418) it is probable that the
enzyme is still physically connected to the gene
(via mRNA and the ribosome) when it initially
binds to the promoter. This mechanism of self-
recognition is a general regulatory principle op-
erative in procaryotes to ensure specificity (444).
Rosa (404) calculates that no more than 24

nucleotides in advance of the initiation site are
necessary for promoter function. In her opinion
the adenine- and thymine-rich sequence be-
tween -13 and -20 might be analogous to the
-35 region, and the sequence TATAGGGA
might be analogous to the Pribnow box
TATPuATPu of promoters for bacterial RNA
polymerase.
T3 and T7 RNA polymerases are monomeric

enzymes of 97,000 and 105,000 daltons, respec-
tively (Table 4). Both enzymes are specific for
homologous DNA, that of T3 more strictly so
than the T7 enzyme (22, 24, 66, 109, 145, 170,
281-283, 422, 430; Beier, Ph.D. thesis). They
recognize neither host polymerase-specific pro-
moters nor terminators (143, 144, 346) and are
not amenable to rho-factor action (66).

Like practically all nucleotidyltransferases, T7
RNA polymerase is a zinc metalloenzyme (77),
and like most other early T7 enzymes, RNA
polymerase is found associated with the cell
membrane (120). The initiation ofRNA synthe-
sis by the phage enzyme (301) is basically similar
to the mechanism described for E. coli RNA
polymerase (330); however, the polymerase-
DNA complexes are unstable until a short oli-
gonucleotide has been synthesized (65,301). Like

the bacterial RNA polymerase, the T7 enzyme
binds to the coding strand and melts a 10-base-
pair sequence of the promoter (479) (see Table
3). RNA synthesis catalyzed by the T3 and T7
enzymes is 5-10 times faster than that of the
bacterial polymerase (283, 301).
The specificity of promoter recognition by T3

and T7 RNA polymerase has been studied from
different angles. Stahl and Chamberlin (472)
showed that modification of the minor DNA
groove by base analogs prevents utilization of
promoters by T7 RNA polymerase, but altera-
tions in one strand affecting the major groove do
not. The properties of hybrid RNA polymerases
induced by recombinants of T3 and T7 DNA
within gene 1 were analyzed by Hausmann,
Beier, and co-workers (22, 24, 170). The lower
molecular weight of the T3 enzyme results from
one or two small deletions in the T3 gene 1 when
aligned with T7 gene 1 (24). Template prefer-
ence seems to be imparted by the region from
0.70 to 0.78 gene 1 length units. The relative
activity on heterologous phage DNA was found
to vary from 20 to 80% among different recom-
binant RNA polymerases, in comparison with
15% for T3 and 50% for T7 wild-type RNA
polymerases, and could not be ascribed to a
particular region of the enzyme (170). In any
case gene 1 recombinants are only viable if the
template specificity domain of the RNA polym-
erase matches a minimum of promoter se-
quences within the recombinant DNA (22).
Chain initiation by T3 or T7 RNA polymerase

is highly specific: the 5' terminus of all in vitro-
synthesized mRNA is pppGp(Gp)nA in the case
of the T3 (283) or pppGpGp(Ap). in the case of
the T7 (32) enzyme. Termination of RNA syn-
thesis, at least by T3 RNA polymerase, appears
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TABLE 4. T7- and T3-directedproteinsa
Mol wt of protein (reference) Constitu-

Protein (gp) Name or function of protein ent of the Reference(s)
no. T7 T3 mature

virion
0.3 ocr protein (ocr and 8,700 11,500 No 254,487,493

0.4
0.5
0.6
0.7

1

SAMase for T3)
Unknown
Unknown
Unknown
Protein kinase

RNA polymerase

1.1 Basic protein (DNA ini-
tiation?)

1.2 DNA initiation?
1.3 DNA ligase
1.7 Unknown
2 Inhibitor protein
3 Endonuclease I
3.5 DNA and RNA metabo-

lism (formerly called
"1ysozyme")

dup? DNA-unwinding (bind-
ing) protein

4 Primase

5 DNA polymerase sub-
unit, 3'-5' exonuclease

6 Exonuclease
7 Coat protein (infectivity)

8 Head protein
9 Head assembly (scaffold-

ing) protein
10 Major head protein

Minor head protein
11 Tail protein
12 Tail protein
13 Coat protein (infectivity)
14 Head protein (core)
15 Head protein (core)
16 Head protein (core)
17 Tail protein (fibers), "se-

rum blocking power
protein"

17.5 ? Lysis enzyme
18 DNA maturation and

packaging
19 DNA maturation and

packaging
20 DNA packaging in

lambda-lysogenic cells

6,600b
ND
ND

42,000

105,000d

5,700"

12,000b

40,000
17,000
8,500
13,500
17,000

31,000

66,000
58,00Of
87,000

31,000
14,700 (484)
50,000 (207)
67,000
45,000"

38,000f
45,000
22,000d
92,000d
14,000
20,000d
89,000d
170,000"
65,000 (346)
76,000 (207, 484)

ND
ND

NDC
ND
ND
40,000

97,000

ND

ND
37,000
ND
ND
ND
ND

ND

ND

ND

ND
55,000

85,000
ND

50,000

27,000
100,000
13,000
20,000
96,000
180,000
80,000

No 110,474,494
No 494
No 494
No 44,369,352,378,485,486,

410,493
No 24, 70, 109, 333, 493; Issin-

ger'
No 418,494

No
No
No
No
No
No

No

No

No

No
Yes

Yes
No

Yes

Yes
Yes
Yes
Yes
Yes
Yes
Yes

418, 494
293,346,484,485,493
484
96,185,267
61,484
228,303,346,460,484

165,345,385,438

188,233,434,192,484

197,346,388,484

346,484,539
207,319,400,484

207,319,346,400,484
207,319,346,400,484

207,319,346,400,484

207,319,400,484
207,319,400,484
207,319,400,452,484
207,319,400,452,484
207,319,346,400,452,484
207,319,346,400,452,484
206,207,319,346,400,484

ND ? 320, 325
ND No 319,400,484

73,000 ND No

I* IND

319,346,400,484

358

a Molecular weights are either the latest published data, averages of published data, or, when differences
between published data were too great, both currently accepted values. Recently identified small phage proteins
of unknown function (34,494) are not included.
bComputed from published DNA sequence (238, 418).
'ND, Not determined.
" Average data.
' 0. G. Issinger, Ph.D. thesis, University of Freiburg, Freiburg, Federal Republic of Germany.
f Possibly processed.
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to occur with comparable precision independent
of other protein factors, yielding the 3' sequence
GP(UP)5GOH (285).
T3 and T7 RNA polymerases are salt sensitive

in vitro (20, 65, 66, 109, 281, 430). The salt
sensitivity of late T3 transcription in vitro can
be overcome by a specific interaction of E. coli
dnaB protein with T3 DNA (S. Michel and B.
Brux, Abstr. Commun. Annu. Meet. Biochem.
Soc. GDR, 11th, Halle/Saale, German Demo-
cratic Republic, 1979, E14; S. Michel, personal
communication). By the following criteria this
interaction appears also essential to relieving the
salt sensitivity of late transcription in vivo: E.
coli CRT 266, a dnaB mutant producing a ther-
mosensitive dnaB protein, is nonpermissive for
T3 replication at high temperature (290). Under
nonpermissive conditions, only the early T3 pro-
teins are expressed, and temperature shift ex-
periments indicate that the dnaB protein is re-
quired for the initiation of RNA chains by T3
RNA polymerase. RNA synthesis in toluenized
T3-infected dnaB mutant cells is stimulated by
salt at permissive temperatures, but inhibited by
salt at restrictive temperatures. Added wild-type
dnaB protein reverses salt inhibition of purified
T3 RNA polymerase at 420C, whereas the ther-
mosensitive dnaB mutant protein fails to do so
(Michel and Brux, Abstr. Commnun. Annu. Meet.
Biochem. Soc. GDR, 11th, Halle/Saale, 1979,
E14). One could surmise an analogy between the
interaction of T3 RNA polymerase with E. coli
dnaB protein, on the one hand, and that of E.
coli primase with dnaB protein, wherein they
form a "mobile replication promoter" (10), on
the other.

Class II transcription encompasses all genes
to the right of gene 6 (see Fig. 1). In vitro T3
RNA polymerase synthesizes six (145), seven
(22, 285), or eight major transcripts (64, 65, 284)
which are translatable by in vitro translation
systems to phage proteins (65). T7 RNA polym-
erase generates six (333) or seven (143, 302)
major mRNA species in vitro which are all class
11 (22, 332, 345). Besides that, three minor tran-
scripts, A, B, and C, are detected which extend
from promoters between 45 and 60% to the 99%
termination site (302). Similar large-size tran-
scripts (I, II, and III) are also generated by T3
RNA polymerase in vitro (284).
Late transcription terminates at only two spe-

cific sites (TL1 and TL2) in vivo and in vitro:
approximately 55 and 100% in the case of T3
(22) and 61 plus 99% in the case of T7 (302) (see
Fig. 1).
Pachl and Young (346) have recently deter-

mined the sizes and mRNA activities of T7 late
in vivo transcripts (eight from class II and eight

from class HI) in an in vitro translation system
and compared their data with the previously
reported (22, 143, 144, 332) activity of mRNA
synthesized in vitro. T3 and T7 in vivo tran-
scripts either are identical to the in vitro tran-
scripts or seem to be derived from them by
ribonuclease (RNase) Im digestion (see Messen-
ger Ribonucleic Acid Processing and Transla-
tion). Among the in vivo transcripts it is possible
to distinguish several class II mRNA's (155, 345,
346); these mRNA's cannot be fractionated from
T7 mRNA synthesized in vitro (143, 144, 332)
(see above). In T7-infected RNase iE-negative
host cells, Hagen and Young (155, 156) have
detected T7 messengers as large as 4 x 10' to 5
x 10' daltons coding for gene 3.5 (class II) pro-
tein, indicating that class II mRNA synthesis in
vivo terminates behind gene 10, at the first
(TL1) of the two unique termination sites (Fig.
1).

Messenger Ribonucleic Acid Processing
and Translation

The early region of the T3 or T7 genome is
transcribed into a large polycistronic messenger
(39, 40, 112, 113, 177, 462, 497) which in vivo is
processed by the host RNasem to yield 2 mono-
and 3 polycistronic mRNA molecules (Fig. 2).
The work on RNase m action not only is fun-
damental for the comprehension of the molecu-
lar biology of T3 and T7 but also has pioneered
the study of sequence-specific RNA cleavage in
eucaryote systems (1, 397). Thus, several publi-
cations were dedicated to the mechanism of site-
specific RNA processing of T3 and T7 RNAs by
RNase HI (107, 108, 114, 178, 240, 241, 398, 408,
409, 491). The recognition sequences of RNase
Im were identified which presumably adopt a
hairpin conformation (110, 114, 241, 336, 398,
407-409, 491). In vitro it is possible to generate
cuts at secondary sites by lowering the ionic
strength, whereby, for instance, fragment F5 is
cleaved off the 1.1 mRNA (Fig. 2). Secondary
processing is, however, relatively ineffective in
vivo (107, 398). It is surprising that, in a situation
resembling a primitive version of that in eucar-
yotic cells, the 3' ends of processed mRNA are
subsequently oligoadenylated (241, 407). T3
RNA polymerase catalyzes polyadenylate syn-
thesis in vitro (422), but its involvement in oli-
goadenylation of phage mRNA has not been
proven.

Hercules et al. (178) postulated that process-
ing of the polycistronic early T3 and T7 messen-
gers was necessary for their effective translation.
Other authors (108, 114, 115, 488, 533) do not
generally confirm this opinion, but find that the
efficiency of 0.3 protein synthesis is increased by
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RNase I1l cleavage of polycistronic mRNA, and
possibly RNase III processing represents an ev-
olutionary advantage under suboptimal growth
conditions (9, 115, 178). The normally about
fourfold excess of 0.3 mRNA over the other four
early mRNA's is due not only to RNA processing
but also to the rho-factor-mediated termination
mentioned above.

Steitz and Bryan (474) and Dunn et al. (110)
have studied mRNA binding and initiation of
protein synthesis on T7 0.3 mRNA. Phage T7
0.3 mRNA is approximately 600 nucleotides long
and carries the information for two proteins: the
5' two-thirds of the messenger specify the gpO.3
(see Interactions with the DNA Modification
and Restriction System of the Host: Functions
of Gene 0.3), and the remaining part codes for a
protein ofunknown function referred to as gp0.4.
gpO.3 is made in large amounts during T7 infec-
tion, gpO.4 is made in smaller amounts, and each
of these proteins is synthesized from separate
specific ribosome-binding and initiation sites on
the 0.3 mRNA. The proximity of the ribosome-
binding site for gpO.3 synthesis to the RNase III
cleavage site on the left end of gene 0.3 (474)
may explain why RNase III action removing a
nontranslated 5' RNA sequence is required for
efficient 0.3 translation (115, 491).
Recently Studier et al. (494) demonstrated

that not only 0.3 mRNA but also the 0.7 and 1.1
mRNA's encode more than one protein (0.7
mRNA encoding gpO.5, gpO.6, and gpO.7 and 1.1
mRNA encoding gpl.1 and gpl.2). Thus, the
early region of the T7 genome codes for nine
proteins. The functions of gpO.3 (ocr protein),
gpO.7 (protein kinase), gpl.0 (RNA polymerase),
and gpl.3 (DNA ligase [polydeoxyribonucleotide
synthetase]) are ascertained, whereas nothing is
known about the functions of the 50- to 120-
amino-acid proteins 0.4,0.5,0.6, 1.1, and 1.2. For
eight of these proteins (but not yet for gpl.2) the
existence of special ribosome-binding and initi-
ation sites which are apparently used with dif-
ferent efficiencies has been established (110, 747,
494). There is no evidence of any proteins being
specified by the region between theA promoters
at the far left of the genome (see Table 1 and
Fig. 2) and the beginning of gene 0.3 (494).
Not only the early transcripts but also poly-

cistronic class II and class mI late T3 and T7
mRNA's are subject to RNase III processing
(114, 157, 284, 346).

Shutoff of Host and Class I and Class HI
Phage Functions

Gene expression of T3 or T7 phage is regu-
lated mainly on the level of transcription (177,
196, 478, 489). The early (class I) gene products
serve to create an environment favorable for

phage-specified syntheses. Then the class II pro-
teins responsible for the synthesis and matura-
tion of DNA appear. As soon as sufficient
amounts of these proteins are present, class I
and class II transcriptions are turned off to en-
sure that the bulk of amino acids provided by
the host cell are converted into phage structural
and maturation proteins (class III proteins) (see
Fig. 1 and Table 4).
The times of appearance and the concentra-

tions ofphage proteins are in essence determined
by the positions of the respective genes in rela-
tion to promoters and termination sites. This
does not apply only to their expression in one of
the three classes: the dosages of certain proteins
required for a longer period (possibly in the 1.1
to 1.3 region?) or in a very high number (the
major head protein coded by gene 10) are en-
hanced because their genes are localized in areas
of overlapping transcription-they are tran-
scribed from early and late (genes 1.1 and 1.3)
or from class II and class III late promoters
(genes 7 to 10). Concentration differences be-
tween mRNA's and proteins of one class are also
maintained by overlapping transcription from
alternative promoters of this class. Thus, due to
intermittent termination, promoter-proximal
genes are transcribed more often than promoter-
distal genes. The economy of phage syntheses
displays such a degree of perfection that appar-
ently genes 18 and 19, coding for maturation
proteins (see Phage Morphogenesis and Cell
Lysis), are transcribed only for the short period
between the initiation of class III transcription
and the termination of class II transcription
(472, 484).
The most important regulatory principle con-

sists in the induction of a phage-coded RNA
polymerase with a strict specificity for homolo-
gous DNA and concomitant inactivation of the
host RNA polymerase. Two phage proteins are
involved in the inactivation of E. coli polymer-
ase, first of all the T7 seryl-threonyl protein
kinase (adenosine-5'-triphosphate-protein phos-
photransferase) specified by gene 0.7 (352, 369,
378), which phosphorylates the/, and /1' subunits
of E. coli RNA polymerase (546). The reason
why the phosphorylated host enzyme becomes
less active is not quite clear and cannot be ex-
plained satisfactorily by the recognition of the
terminator TE1 by the modified polymerase
(369) and its inability to reinitiate RNA synthe-
sis (546). Recent studies by Hesselbach and Na-
kada (184) and McAllister and Barrett (298)
confinn the role of the T7 protein kinase in the
shutoff of E. coli RNA polymerase-dependent
transcription. It is probable that the early T3
function capable of altering the ,B subunit of E.
coli RNA polymerase and reducing polymerase
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activity to 25% (100) is analogous to the T7 gene
0.7 function (despite the fact that these authors
could not detect a corresponding activity in T7-
infected cells).

gpO.7 phosphorylates not only the host's RNA
polymerase but also other proteins in the in-
fected cell (377), including itself in a self-inacti-
vating reaction (352). Rahmsdorf et al. state that
their discovery of T7 kinase is the first demon-
stration of a seryl protein kinase-a well-known
enzyme activity in eucaryotes-in a procaryotic
cell (378).
A much stronger effect on E. coliRNA polym-

erase is, however, exerted by an inhibitor protein
coded for by gene 2 (184). This inhibitor protein
(see Table 4) binds physically to RNA polym-
erase holoenzyme, forming a 1:1 complex (96,
185, 267). The sensitivity of the wild-type RNA
polymerase is apparently dependent on the a
subunit, but its sensitivity can be abolished by
tsnB and BR3 mutations affecting the subunit
of the enzyme (96) (see tsn Mutations of Esch-
erichia coli). It is not clear whether a connection
exists to the loss of the a factor by E. coli RNA
polymerase holoenzyme after T7 infection re-
ported by Khourgess and co-workers (33, 548).
gp2 has no effect on phage RNA polymerase
(183-186, 267, 368, 369). An analogous late pro-

tein which blocks the initiation ofRNA synthe-
sis by E. coli RNA polymerase was also de-
scribed for T3 (279, 280) and is probably T3 gp2.

In contrast to the 0.7 protein kinase, gp2 is
essential for phage development (484). The ex-

ceeding complexity ofgp2 functions (this protein
is also required during DNA maturation [see
DNA Replication, Maturation, and Recombi-
nation]) have made it difficult to pinpoint the
essential interaction(s). It is clear, though, that
binding of gp2 to E. coli RNA polymerase is
essential, since the above-mentioned tsnB mu-

tants (67) do not support the growth ofT7 phage
(96).
The shutoff of host and early phage protein

syntheses is not entirely explained by the mech-
anisms described above. Two further processes

may be involved in the early-to-late switch:
translational discrimination in favor of late
mRNA and functional instability of early
mRNA's. Some authors (441, 536-538) have es-

timated the functional half-life of early mRNA
to be only a few minutes, and, therefore, when
early transcription is shut down, the cessation of
early protein synthesis is inevitable. Results im-
plicating an additional phage-directed control
mechanism (protein) preventing the translation
of early phage mRNA (179, 446) have been
contradicted (532). The situation is complicated
by the fact that Young and co-workers report
longer mRNA half-lives (196,346,478,479) than

those reported by Yamada's group (536-538)
and postulate a translational control at least for
the expression of gene 0.3 (478). Results of
Strome and Young (480) do indicate a transla-
tional discrimination against 0.3 mRNA towards
the end of the infectious cycle, which, however,
is not caused by a phage-specific control protein
but simply by the excess oflate mRNA. Hercules
et al. (177) confirmed the rapid functional inac-
tivation found by Yamada et al. (536-538) and
could not trace any translational discrimination
among the individual earlymRNA species. How-
ever, significant differences in translational uti-
lization were reported for early mRNA's by
Steitz and Bryan (474), Dunn et al. (110), and
Studier et al. (494) and for late mRNA's by Niles
and Condit (332). The patterns ofin vitro protein
synthesis, using late T7 mRNA's, show a striking
correspondence to in vivo patterns (196, 332,
345, 346); hence, additional modes of "late"
translational control in the infected cell probably
do not exist.
The predominance of class III protein synthe-

sis over class II protein synthesis (484) might in
part result from a faster functional inactivation
of class II mRNA's, though data on this topic
are scarce (154). McAllister and Wu (303) have
now demonstrated that not only the synthesis of
late proteins but also late transcription itself is
temporally regulated: class II and class III
mRNA's are synthesized at different times and
in different amounts. This regulation is partially
mediated by gp3.5, since in its absence the turn-
off of class 11 transcription at 15 min postinfec-
tion (300C) is not performed (303).
gp2 is also suspected to play a role in this

switchover. It has been proposed that complexes
of gp2 with E. coli RNA polymerase might bind
to sites in the late genome region and inhibit
progression of the phage-coded RNA polymer-
ase (218,471). This mechanism is reminiscent of
the action of repressor-like polymerase-rifampin
complexes on T7 mRNA synthesis in vitro (35,
218), and, in fact, one of the activities of gp2,
namely, in DNA packaging in vitro (see below),
can be replaced by rifampin (267, 344). In line
with this evidence, the class 11-type shutoff of
gene 19 transcription (472, 484) might be accom-
plished by an inhibitory E. coli polymerase com-
plex bound to promoter E (see Table 1 and Fig.
1).
In summary, the following mechanisms may,

in principle, contribute to the observed concen-
tration differences between individual phage
proteins in the infected cell: (i) promoter utili-
zation and termination (transcription rate), (ii)
mRNA half-lives, (iii) translational utilization of
individual messengers, and (iv) functional sta-
bility of the proteins themselves.
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INTERACTrIONS WITH THE DNA
MODIFICATION AND RESTRICTION

SYSTEM OF THE HOST: FUNCTIONS OF
GENE 0.3

Adenosylmethionine Hydrolase
T3 encodes an enzyme, SAMase (EC 3.3.1.2),

which hydrolyzes intracellular S-adenosylme-
thionine (SAM), yielding thiomethyladenosine
and homoserine (131, 141, 142). The correspond-
ing gene (sam+) is located at the left end of the
genome (168) and was numbered gene 0.3 (493,
496). The molecular weight of the T3 protein is
11,500 (493), but a higher molecular weight,
17,000, has also been reported (469). T7 does not
induce a SAMase, although a gene 0.3 is present
(131, 141, 142, 254, 462, 470, 484, 487, 494).
SAM is the methyl donor for the transmeth-

ylation of macromolecules (DNA, RNA, pro-
tein); it is involved in the synthesis of polya-
mines and in other biosynthetic pathways (52,
511). SAM plays a key role in the processes of
host-controlled DNA M/R; classical modifica-
tion is based on DNA methylation, and, more-
over, type I restriction enzymes require SAM as
an allosteric effector for DNA binding or the
stabilization of this interaction (11, 153, 504,
542).
Although Hausmann (161) isolated a number

of T3sam- mutants, the biological functions of
SAMase remained obscure for a long time, since
sam+ and sam- T3 derivatives behaved identi-
cally on a variety of host cells and under differ-
ent growth conditions (164). In 1975 the biolog-
ical consequences of SAMase action were rec-
ognized by Kriiger et al. (243). In starved cells
T3 wild-type phage becomes temperate, whereas
T3sam- and T7 multiply normally. When, how-
ever, methylation of T3sam- phage DNA is
prevented, the mutant phage also establishes a
lysogenic infection (see T3 As a Facultative
Temperate Phage). A second trait conferred by
the possession of SAMase is the partial protec-
tion of T3 against in vivo restriction by EcoPl
endonuclease (243, 251), probably because the
lack of SAM in the T3-infected cell prevents
stable binding of the restriction endonuclease to
phage DNA (see P1 Prophage).
The possibility ofturning off all SAM-depend-

ent processes with the aid of the sam+ gene
makes phage T3 a convenient tool to study the
consequences of preventing DNA methylation,
type I restriction, and other cellular SAM-de-
pendent reactions (82, 141, 149, 227, 243, 288,
425). Doubtless, this is an interesting technique,
but it must be taken into account that, for ex-
ample, DNA M/R is counteracted not only by
SAMase but also by a second function localized

in gene 0.3, the ocr+ function (see Ability to
Overcome Classical Restriction (ocr)).
For a long period T3 was believed to be the

only phage to encode SAMase (164,203). Mean-
while, it has been demonstrated that coliphage
SD, Serratia phage IV, and Klebsiella phage 11
produce SAMase (239, 331).

Ability to Overcome Classical Restriction
(ocr)

T3 and T7 can be passaged through E. coli
strains of different DNA host specificities (e.g.,
E. coli strains C, B, and K) without being phe-
notypically restricted (122). This property is not
unique to T3 but is also displayed by T7 and
T3sam- derivatives, which means that even in
the absence of SAMase there is sufficient pro-
tection against DNA restriction, despite the fact
that both T3 and T7 DNAs contain recognition
sites for EcoB (121, 254).

Studier (487) and Studier and Mowa (493)
showed that T3 and T7 gene 0.3 mutants are
phenotypically restricted by E. coli strains B
and K and carry the respective modifications
after passage over these strains. After this basic
discovery, the protection mechanism was stud-
ied intensively. T3 specifies the SAMase (sam'
gene function) as well as the ability to overcome
classical restriction, which was termed ocr+ by
Kruger et al. (254). It was demonstrated (254)
that sam+ and ocr+ are distinct functions of the
T3 gene 0.3; T7 only possesses the ocr+ function.
The ocr mutants of T3 and T7 are subject to
classical M/R via DNA methylation versus en-
donucleolytic cleavage (254). The effect of ocr+
consists in actively turning off the cellular re-
striction enzyme to protect the unmodified rec-
ognition sites on the phage DNA against cleav-
age. This protection is, moreover, extended to
any foreign DNA simultaneously introduced
into the cell. When T3 or T7 phage are inacti-
vated by ultraviolet radiation so that they can
no longer destroy the cell but still are able to
express gene 0.3, then it is possible to introduce
plasmid DNA by conjugation (244) or transfor-
mation (387) without it being restricted. The
recipient cells survive and are able to replicate
themselves as well as the newly acquired plas-
mid (Fig. 3).
T3 and T7 are the first phages whose mecha-

nisms of turning off cellular restriction enzymes
were closely examined (see Modes of Action of
sam + and ocr+ Gene Functions). Protection is
definitely exerted against type I restriction, and
an effect against type II restriction (EcoRII) is
indicated by preliminary results (Wackernagel,
personal communication). Meanwhile, antire-
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bacterial genome

gene for
restriction
endonuclease

ocr gener

UV-T7 phage'

FIG. 3. Protection by T3 or T7 ocr+ gene function of foreign plasmid DNA against restriction. Plasmid
DNA, a common vector in gene transfer, is restricted in normal restriction-proficient recipient cells if it
contains recognition sites for the appropriate restriction system (top). Afterpreinfection ofcells with ultraviolet
(UV)-inactivated T3 or T7phage still able to express the ocr' gene, the cellular restriction endonuclease (R)
is blocked; subsequently introduced foreign plasmid DNA is not destroyed (bottom). (From references 244 and
387.)

circular piasmid DNA

striction functions of other phages have been
described, e.g., for T5 (42, 90, 91) and Bacillus
subtilis phage 4NR2 (287). The situation is
much more complex in the case of T-even
phages, where in addition to the glucosylation of
hydroxymethylcytosine, further protective func-
tions exist (99, 270).

Recently, a function of restriction endonucle-
ase EcoK in the in vivo repair of DNA cross-
links in E. coli was reported (25) where the
restriction enzyme acts not nucleolytically, but
rather as a regulatory protein or by protecting
single-stranded DNA against nuclease attack
(26). The ocr+ gene function does not diminish
this effect of EcoK (A. A. Belogurov, G. B.
Zavilgelsky, and D. H. Kruger, submitted for
publication).

Effects on DNA Modification
The expression ofSAMase during T3 infection

causing a depletion of SAM explains why T3
DNA carries no methyl groups whatsoever (131,
141). In contrast, the DNA of the SAMase-neg-
ative phage T7 is methylated (131, 141). How-
ever, T7 DNA, too, is undermethylated com-
pared with host cell DNA: the ratios of 6-meth-

ylaminopurine to adenine and of 5-methylcyto-
sine to cytosine in E. coli DNA are about 30 to
50 times higher than those in T7 DNA (U.
Giinthert, Ph.D. thesis, University of Tubingen,
Tubingen, Federal Republic of Germany, 1975).
Two reasons for this have been recognized. First,
the gene 0.3 ocr+ function prevents not only
host-controlled restriction but also modification
(245). This is why T7 lacks host-specific (hsp)
methylation, which is present in the DNA of
ocr mutants (245, 254, 487). The prevention of
hsp methylation by the ocr+ function is the
explanation of the observation (121) that the
DNA of T7 wild-type virus grown in E. coli B is
susceptible in vitro to cleavage by purified re-
striction endonuclease EcoB.

Second, it was shown (102) that the dam
methylase (deoxyadenosine methylase [291])
acts only weakly on T7 DNA in vivo: the rec-
ognition sequence 5'-GATC-3' for MboI (135),
which happens to be identical with the sequence
methylated by the dam enzyme (133,160), is not
protected against MboI cleavage in vitro. This
result is supported by data proving that the
DpnI endonuclease, which cuts at methylated
5'-GATC-3' sites, scarcely attacks T7 DNA in
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vitro, whereas the complementary enzyme
DpnII, which specifically cleaves the nonmeth-
ylated identical sequence, accepts T7 DNA as a
substrate (257, 258). Considering that E. coli
dam enzyme sensitizes DNA to the action of
DpnI (515), one can deduce that during T7 DNA
replication dam acts on very few, if any, of the
dam-specific sites in T7 DNA. It is speculated
that T7 may replicate faster than its DNA can
be methylated by this enzyme (258), or, more
probable, that the dam protein is an integral
component of the E. coli DNA replication com-
plex, but not of the T7 replication apparatus,
and therefore has no access to phage DNA (102).

Unfortunately, the situation has been some-
what confused by a recently published paper of
Auer et al. (15) in which it is stated that the
gene 0.3 product (termed "M" protein by this
group [see below]) has no influence on the meth-
ylation of T7 DNA. The mutants used in this
study were merely selected for their inability to
grow on a restriction-proficient E. coli host and
are not phenotypically modified in vivo (15).
Consequently, no difference in the DNA meth-
ylation of such mutants as compared with the
wild type is to be expected. Of course, authentic
gene 0.3 ocr- mutants undergo host-specific
modification (245, 254, 487, 493). A comparison
of the mutants used by this group (15, 193, 364,
366, 446) with the precisely mapped and well-
characterized gene 0.3 mutants of Studier and
co-workers (487, 493, 494) is called for.

Modes of Action ofsam+ and ocr+ Gene
Functions

In T3, sam+ and ocr+ represent distinctive
functions of the 0.3 protein. T7 gpO.3 has only
the ocr+, not the sam+, function. The two func-
tions interfere with different steps in the inter-
action between DNA and type I restriction en-
zymes. By destruction of intracellular SAM, the
sam+ function ab initio suppresses DNA meth-
ylation. The activation of type I restriction en-
zymes and the stability of the enzyme-DNA
complex, which both depend on SAM, are re-
duced in the SAM-depleted cell. The effect of
the ocr+ function is not connected with SAM
hydrolysis and interferes with a later step of the
interaction between restriction endonuclease
and DNA, preventing cleavage as well as meth-
ylation (245, 251, 254; D. H. Kruger, Int.
UNESCO/ICRO Symp., Szeged, Hungary,
1977). The independence of the sam+ and ocr+
activities has recently been confirmed by in vitro
studies on purified gp0.3's from T3- and T7-
infected cells (470). Thus, T3 gp0.3 appears to
be at least bifunctional. The isolated 0.3 proteins
of T3 and T7 bind directly to the restriction

endonucleases EcoB and EcoK and exert ocr
activity in this way (470; F. W. Studier, personal
communication).

Cellular restriction enzymes usually destroy
foreign DNA immediately upon its entry into
the cell (461). The ocr+ function bestows com-
plete resistance to endonucleolytic cleavage to
the phage DNA (254), and this protection de-
pends on active synthesis of gp0.3 in the infected
cell (423; D. H. Kruger, unpublished data). We
have already mentioned that gene 0.3 is located
on the far left end of the genome, which is the
first to be injected (357, 417) and expressed (168,
462,487,493,497). Furthermore, T7 (and maybe
also T3) 0.3 mRNA has an increased rate of
synthesis and is more stable than the other early
mRNA's (see Regulation of Gene Expression),
which leads to an especially high rate of gp0.3
synthesis (177). But how can the ocr+ function
ensure instantaneous protection of the phage
DNA when gp0.3 only becomes detectable at 2
min (37°C) in postinfection (168, 177)?
The delayed injection of T3 and T7 DNAs

may be the "trick" by which the phages prevent
exposure of DNA recognition sites before the
appearance of gp0.3. Transcription of the left-
most DNA region must be the precondition for
injection of the rest of the' genome. This has
been elegantly confirmed by experiments show-
ing that upon blocking of E. coli RNA polym-
erase by rifampcin or streptolydigin, injection of
T7 DNA is inhibited (544). The development of
the antirestriction function of phage T5 follows
a similar schedule (42, 90, 91).
The two gene functions sam+ and ocr+ make

T3 and T7 interesting model viruses for resolv-
ing individual steps of DNA M/R and their
modulation by virus functions. They could also
be useful in elucidating the in vivo significance
of sequence-specific DNA methylation and cut-
ting processes for DNA replication, repair, re-
combination, and transcriptional control (12, 25,
48, 81, 92, 137, 194, 261, 382, 396, 512; T. A.
Trautner, B. Pawlek, U. Gunthert, U. Canosi, S.
Jentsch, and M. Freund, Mol. Gen. Genet., in
press; see also T3 as a Facultative Temperate
Phage). It was discovered recently that SAM-
dependent endonucleases corresponding to cer-
tain methylases also exist in eucaryotic cells (47).

Other Functions Ascribed to Gene 0.3
Ratner (380) found that T7, but not T3, gp0.3

binds to E. coli RNA polymerase. The nature of
this interaction has not been studied. On the
basis of this observation it was supposed for a
certain time (183) that the inhibitor protein later
identified as gene 2 product (184) was encoded
by gene 0.3.
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In 1974 Herrlich et al. (179) claimed to have
localized the T7 gene coding for a translational
repressor (see Shutoff of Host and Class I and
Class II Phage Functions) on the left end of the
T7 genome, between the early promoters and
the 0.7 (kinase) gene. However, in the year there-
after Herrlich and co-workers (446) reported
that the translational repressor was a late gene
product and instead postulated that gene 0.3
encodes the so-called M (membrane) protein
(446), which was supposed to make the E. coli
membrane more permeable, allowing an efflux
of potassium ions and creating an optimal ionic
environment for the synthesis and function of
phage-induced enzymes (366, 367). Herrlich and
co-workers postulated that this drop in ionic
strength was the basis for the following functions
of the M protein (366,446): (i) killing of the host
cell, possibly via inhibition of host macromolec-
ular syntheses; (ii) protection of infecting T7
DNA against host nucleases of the recBC and
restricting types; (iii) mutual and superinfection
exclusion of T3 and T7; and (iv) alteration of
phospholipid synthesis after T7 infection, result-
ing in the appearance of new polar lipids. None
ofthese assumptions has been substantiated (see
Shutoff of Host and Class I and Class II Phage
Functions, E. coli Transfection, and The Prob-
lem of Heterologous and Homologous Superin-
fection Immunity). The true function of gpO.3,
the blocking of restriction enzymes, is exerted
not via a reduction of ionic strength, but rather
through direct binding ofthe gpO.3 to the restric-
tion enzyme (470).
Even the significance of the potassium efflux

from the cell due to M protein action has been
questioned. First of all, efflux had only been
observed at subnormal (1 ,uM) potassium con-
centrations in the medium (366), and, further-
more, S. Michel and co-workers (personal com-
munication) have observed no such passive K+
loss from T3-infected cells. In addition, Michel
and Brux (Abstr. Commun. Annu. Meet. Bio-
chem. Soc. GDR, 11th, Halle/Saale, 1979, E14)
(see Transcription) showed that, in the case of
T3, transcription by phage RNA polymerase is
carried out in vivo despite the presence of nor-
mal potassium concentrations, provided that a
functional E. coli dnaB protein is present.

It is a fact that T7 gp0.3 is found associated
with the cell membrane (120), but so are most
other phage proteins, including even the major
coat protein (gplO). McAllister and Wu (303)
reported that neither deletions in the early T7
genome region nor a high concentration of mon-
ovalent cations (0.15 M KCl) had any effect on
late T7 mRNA synthesis in vivo. Condit (79)
observed a permeability change late in infection

(beginning 16 min postinfection at 30°C) which
is probably caused by gp3.5 (see Gene 3.5 Prod-
uct and True Lysis Enzyme).

DNA REPLICATION, MATURATION,
AND RECOMBINATION

Great progress has been made in the study of
DNA replication, and several reviews have ap-
peared to which we shall refer for general facts
(8, 105, 132, 211, 236, 237, 314, 390, 459, 522, 545).
DNA replication is initiated through a highly
specific recognition step (for review, see refer-
ences 8, 236, and 444), at a unique origin site(s),
in some cases by incision of one of the parental
DNA strands and in others by the synthesis of
an RNA primer ("ori" RNA) from the origin
sequence. DNA replication is catalyzed by a
delicate multienzyme apparatus, the replisome
(237, 522). Depending on the size and structure
of the DNA template, different types of proteins
are required forDNA strand separation (72, 211,
256). The replication fork opens up in advance
of the growing "leading strand," which is prob-
ably synthesized continuously in 5' to 3' direc-
tion, whereas the "lagging strand" (3' to 5') must
by necessity be synthesized in fragments, each
initiating with a short RNA primer (343, 545).
DNA synthesis of double-stranded DNA

phage proceeds either by a rolling circle mech-
aniism or bidirectionally on linear or circular
templates and produces characteristic interme-
diate DNA structures (105). The newly repli-
cated DNA has to "mature," i.e., be processed,
in order to yield native-sized progeny DNA (105,
390), and the ultimate stages ofDNA maturation
are coupled to phage morphogenesis.
Apart from the first round of replication, the

synthesis ofT7 DNA is spatially separated from
the cellular region where parental T7 DNA is
being transcribed. This might be achieved by
different sites of membrane attachment of tran-
scribing and replicating complexes (187). It is
noteworthy that in the case of T7, DNA repli-
cation is not the precondition for late transcrip-
tion (67, 484), as it is for T-even phage.

Enzymology ofDNA Synthesis
Breakdown of host DNA. About 5 mi after

T7 infection (37°C), E. coli DNA is released
(probably aided by gp3.5 [460]) from a fast-sed-
imenting structure and subsequently disrupted
into fragments (2 x 106 daltons) by gene 3-spec-
ified endonuclease. These fragments are totally
digested to deoxynucleoside monophosphates by
the gene 6 exonuclease (61, 222, 223, 359, 414).
T7 and T3 induce no nucleotide-synthesizing
enzymes of their own and are thus fully depend-
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ent on the precursors acquired by host DNA
degradation. The two phage-coded nucleases
(gp3 and gp6) are also involved in DNA recom-
bination and concatemer fonnation (see below),
whereas other apparently T7-specified endonu-
cleases (57, 348, 411) have not been assigned any
definite role in T7 DNA metabolism.
Primary initiation. The origin of replication

(ori) on T7 DNA was placed at 17% by electron
microscopy (106) and has now been mapped
precisely by Saito et al. (418) as a 129-base-pair
sequence between 14.73 and 15.05 map units. It
spans the right half of the 14.75 promoter, a 61-
base-pair noncoding intercistronic region, and
the first 14 codons of gene 1.1. The intercistronic
sequence contains seven copies of the palin-
drome TTAA, which would allow the formation
of hairpins, and there is a gene 4 protein (pri-
mase) site, GACCC, within. Saito et al. assume
that at this position leading-strand synthesis is
initiated by the primase (see below) and pro-
ceeds rightward until the first primase site on
the opposite strand is exposed. This initial right-
ward movement might explain why eye-form
intermediates at position 17 are observed.
Marker rescue studies after ultraviolet irradia-
tion had also suggested that the origin of repli-
cation is situated to the left of 17% (45, 46). This
major origin initiates 70% of phage DNA syn-
thesis (388). Deletion mutants lacking this origin
are apparently viable (462), and minor origins
have been identified (388, 418, 435). The pre-
dominant secondary origin is located at approx-
imately 4% (418), near promoter B.
The proximity of ori to class II promoters has

been noted (106, 229, 230, 390), and it was pro-
posed that T7 RNA polymerase plays a role in
primary initiation. This is supported by Hinkle's
observation that thermoinactivation of a tem-
perature-sensitive T7 RNA polymerase causes a
cessation of phage DNA synthesis (189). The
function of T7 RNA polymerase in initiation is
probably the transcriptional activation ofthe ori
region (see Fig. 2), a process described in the
review of Kolter and Helinski (236). A faculta-
tative role of gpl.1 and gpl.2 in primary initia-
tion is assumed (418).
DNA polymerase. T7 DNA polymerase

(DNA nucleotidyltransferase, EC 2.7.7.7) has an
intriguing structure. It consists of two subunits
(230): the phage gp5 (150, 322, 340) plus the
product of the E. coli tsnC gene (321), which
was identified as thioredoxin (292). Thioredoxin
was originally isolated as the cofactor of ribo-
nucleoside-diphosphate reductase (265). It is a
protein of 12,000 daltons (292) with a very high
cysteine content. In relation to its function in T7
DNA replication, it may be important that thio-
redoxin can be phosphorylated at cysteine-32

(80, 365). Native T7 DNA polymerase is a dimer
of these two subunits (7, 322). These may be
separately purified from T7-infected cells (197)
lacking either thioredoxin (tsnC [trx] mutants
[195]) or gene 5 protein, and, on reconstitution,
they yield functional T7 DNA polymerase (7,
198).
T7 DNA polymerase displays 3'-5' exonucle-

ase activity (150, 340). gp5 itself is a single-
strand-specific 3'-5' exonuclease possessing a
deoxynucleoside triphosphate binding site (7,
198) but nevertheless unable to catalyze even a
single polymerization step (198). The reconsti-
tuted enzyme, besides catalyzing DNA synthe-
sis, carries a 3'-5' exonuclease activity for double-
stranded DNA. It also has the single-stranded
DNA 3'-5' exonuclease activity of gp5 (7, 198).
The relationship between structure and function
ofT7 DNA polymerase is reminiscent of the fact
that the phage T4 DNA polymerase amB22
fragment (which lacks the cysteine-rich 20%
COOH-terminal region) is devoid of polymerase
activity but retains 3'-5' exonuclease activity
(334, 335).
Ribonucleic acid primer synthesis. Nas-

cent T7 DNA fragments complementary to the
heavy strand are linked to RNA (313). Discon-
tinuous synthesis of one of the strands has also
been demonstrated by electron microscopy (528,
529) and hybridization studies (476). RNA
primers are synthesized by a multifunctional
phage enzyme, the gene 4-coded primase (432,
439), essential in vivo for lagging-strand synthe-
sis (476, 529). In vivo the primers are two to six
nucleotides long and composed mainly of aden-
osine and cytidine; the first deoxynucleotide is
deoxyribosylthymine monophosphate (342,447).
Primer structure in vivo is more diverse than
that in vitro, where predominantly pppACCA
and pppACCC are made (188,402,403,433,434),
which are also the most effective primers for
subsequentDNA synthesis. T7 primase has been
purified and characterized (192, 233, 433, 434,
439, 476). It occurs in a 66,000-molecular-weight
species (434) and a 58,000-molecular-weight spe-
cies (233) (see Table 4) which display identical
enzyme activities in vitro.
T7 primase has several copurifying activities

(188): (i) single-strand-DNA- and (in the pres-
ence of T7 DNA polymerase) also double-
strand-DNA-dependent hydrolysis of (preferen-
tially deoxy)nucleoside triphosphates (234), pro-
viding the energy for (ii) catalytic participation
in DNA strand separation (188, 433) as a "heli-
case" (see references 72 and 256), (iii) catalysis
ofRNA primer synthesis (432-434,439), and (iv)
stimulation of primer extension by T7 DNA
polymerase (188, 402).
The native enzyme is a dimer of two identical
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subunits (188). The intimate functional cooper-
ation of T7 primase and DNA polymerase is
revealed by their mutual sensitivities to each
other's inhibitors: (i) dideoxythymidine triphos-
phate interrupts DNA chain growth and con-
comitantly stops gp4-catalyzed (deoxy)nucleo-
side triphosphate hydrolysis, and (ii) f--y-meth-
ylenedeoxyribosylthymine triphosphate, a pri-
mase inhibitor, arrests DNA synthesis (234).
Neither the three E. coli DNA polymerases nor
phage T4 DNA polymerases are stimulated by
T7 gp4 (434); thus, the interaction between T7
DNA polymerase and primase is highly specific.
T7 primase can, however, cooperate with T3
DNA polymerase (188). In many respects the
T7 primase-DNA polymerase enzyme pair is
functionally equivalent to the E. coli dnaB-
dnaG protein complex, acting as a "general
priming system" for DNA replication (10, 237,
473).
RNA primers accumulate in T7-infected cells

lacking gp6 and E. coli DNA polymerase I-as-
sociated 5'-3' exonuclease (454). Purified gp6
displays RNase H activity (455), so gp6 is pre-
sumably responsible for primer degradation in
vivo.
DNA-unwinding protein and DNA ligase.

Whereas T7 DNA polymerase and primase are
essential phage functions, T7 also induces a non-
essential DNA-unwinding protein (the corre-
sponding dup gene has not been precisely
mapped as yet). The protein was purified and
shown to specifically stimulate T7 DNA polym-
erase (385, 386, 438). In contrast to the specificity
of the T7 DNA-unwinding protein, the analo-
gous E. coli protein stimulates E. coli DNA
polymerases II and III (holoenzyme) and also
T7 DNA polymerase, accounting for the fact
that dup protein is dispensable during T7 repro-
duction (323, 324). The properties of DNA-un-
winding proteins (also termed helix-destabilizing
proteins) were recently reviewed (72).
T3 and T7 gene 1.3 encode an adenosine 5'-

triphosphate-dependent DNA ligase (293, 493)
which can be substituted in vivo by E. coli ligase,
although the latter is nicotinamide adenine di-
nucleotide dependent (21, 293). One may ask
why T7 (and T3) encode proteins which are
functionally replaceable by host proteins. The
explanation is probably that the DNA-unwind-
ing protein is needed in stoichiometric amounts
and that DNA ligase must seal DNA fragments
at a multitude of sites simultaneously, also ne-
cessitating a high enzyme concentration.
DNA-relaxing enzymes. DNA gyrase (to-

poisomerase II), an enzyme with the capability
of relaxing and introducing superhelical turns, is
essential for DNA replication in E. coli (see
reviews by Jovin [211] and Champoux [72]). In

addition to topoisomerase I (w protein), two
types ofDNA gyrase (topoisomerases II and II')
are present in E. coli which differ functionally
as well as in the size of the smaller subunit (41).
This subunit is encoded by the gyrB (cou [cou-
mermycin resistance]) gene of E. coli and the
larger subunit is encoded by the gyrA (nalA
[nalidixic acid resistance]) gene (72). Itoh and
Tomizawa (208) showed that coumermycin in-
hibits T7 DNA replication in E. coli wild type
and concomitantly less in coumermycin-resist-
ant host cells, indicating that at least the gyrB
(cou) gyrase subunit is involved in phage DNA
replication. DeWyngaert and Hinkle (97) con-
firmed these in vivo results but showed that
gyrase is not required in vitro. Coumermycin
also inhibits late T7 transcription (97).
The requirement for topoisomerases during

the replication of circular double-stranded DNA
is evident; the apparent role of DNA gyrase
during T7 phage DNA replication (208) was
explained by the collapsed state of replicating
T7 DNA in vivo (95) or by its membrane attach-
ment (97, 208), either severely limiting free ro-
tation of the linear double strands. The validity
of this interpretation has recently been chal-
lenged by Kreuzer and Cozzarelli (242), accord-
ing to whom nalidixic acid inhibits the growth
of T7 phage, whereas heat inactivation of a
thermosensitive nalA (gyrA) gyrase subunit
does not. They infer that nalidixic acid blocks
T7 growth by a corruption of the enzyme which,
per se, is not necessary for T7 DNA synthesis.
This corruption could, for instance, consist in
trapping of a gyrase reaction intermediate (495)
and would explain the dominance of drug sus-
ceptibility in vivo (242). In this connection it is
remarkable that certain phage T3 DNA polym-
erase (gene 5) ts mutations confer a partial na-
lidixic acid resistance to T3 replication in vivo
(443). In the light of Kreuzer and Cozzarelli's
work, it is warranted to reevaluate the effects of
coumermycin on T7 DNA replication.
Reconstituted in vitro systems. Attempts

to reconstitute T7 DNA replication in vitro date
back to 1973 (230), and partially reconstituted
systems containing T7 DNA polymerase and
primase with or without DNA-binding protein
were described later on (191, 432). Replication
forks formed in vitro closely resemble those
formed in vivo (31, 432). Masker and Richardson
(296, 297) developed an in vitro system including
E. coli DNA polymerase I which produces ma-
ture-size T7 DNA capable of transfecting E. coli
spheroplasts. Richardson et al. (388) have suc-
ceeded in reconstituting an enzyme system
which performs primary initiation on intact du-
plex T7 DNA (see above) and carries out lead-
ing- and lagging-strand synthesis at the replica-
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tion fork in a manner similar to that observed in
vivo. Thus, the reactions occurring at the repli-
cation fork are now thoroughly understood (see
Fig. 4). However, the role of the replicative
intermediates described in Structure of Repli-
cating and Maturing DNA is still not clear.

Structure of Replicating and Maturing
DNA

T3 and T7 DNAs possess terminal redundan-
cies (391) which are essential for phage multi-
plication (22, 104). The length of the terminal

repetition of T7 DNA has now been estimated
by independent methods to be 150 to 160 base
pairs (103, 405). Due to unidirectional DNA
polymerase movement, unit-size DNA has no
means of replicating the 3'-terminal gaps which
arise by excision of primer RNA. Watson (520)
therefore postulated that linear duplex DNA
must replicate via concatemers which form by
hybridization of the unreplicated 3' redundant
regions of newly synthesized DNA. To this day,
Watson's postulate has not been conclusively
proved or disproved.
The first round and at least the second round
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of T7 DNA replication begin at the ori site (see
above) and proceed bidirectionally, creating first
an eye and later on a Y-shaped intermediate
structure (106, 528, 530); no circles are formed
530) (see Fig. 4).

Intracellular T7 DNA is associated with the
membrane. (For technical details of studying
phage DNA-membrane interactions, please con-
sult the review of Siegel and Schaechter [459].)
At a few minutes postinfection, parental T7
DNA is found associated with the inner cell
membrane (also in the absence of phage protein
synthesis) (58, 59, 347). The membrane complex
contains phage DNA polymerase and actively
synthesizes DNA (59); this DNA synthesis is
just as ultraviolet sensitive as T7 in vivo DNA
replication (526). Apparently, parental and prog-
eny DNA molecules are bound to the membrane
with different strengths (187). Parental DNA
remains attached to the membrane throughout
infection (187)-the attachment site is located
within the early DNA region (175)-whereas
replicating DNA is eventually released from the
membrane (450). Parental DNA seems not to
participate in concatemer formation (126). Since
T7 DNA replication in vitro does not require
membrane components, membrane association
seems to serve an organizational role in vivo.
Concatemer DNA in T7-infected cells was

initially observed by Hausmann (162), Carlson
(53), Kelly and Thomas (221), Hausmann and
LaRue (169), and Ihler and Thomas (204). Later
during replication, there appear condensed
coiled progeny DNA structures (30, 60, 187, 295,
350, 372, 440, 450, 476, 477, 510), which are also
seen in T3-infected cells (129). This complex
DNA was purified and characterized (260, 350).
It contains about 100 phage genome equivalents
and sediments at approximately 440S. In con-
trast to the compact folded E. coli genome (531),
the T7 DNA complex is not held together by
RNA, but contains hydrogen-bonded unit-size
phage DNA (126, 440, 450, 477). Concatemer
formation does not require recombination and
may proceed when both the gene 3 and the gene
6 nucleases are simultaneously absent (126,315).
Under normal circumstances gp6 is essential for
T7 (126, 169, 315) or T3 (539) concatemer for-
mation. gp3 of T7 is not essential for in vivo and
in vitro concatemer formation (295, 315, 415).
The apparent requirement of gp3 for T3 DNA
concatemerization probably reflects the polar
effect of a gene 3 amber mutation on the expres-
sion of the dup gene. T3 DNA-unwinding pro-
tein may function in concatemer formation in
vitro and also in vivo (129). T7 gp2 is required
for the maintenance of concatemer structure
(60).
The pathway of DNA replication and matu-

ration is conceived to be as follows: unit-size
DNA -- short concatemers -- complex fast-sed-
imenting intermediate -. short concatemers --

unit-size DNA (350). Net T7 DNA synthesis is
completed at 17 min postinfection at 300C (260).
The rapid, site-specific cleavage of concatemers
into monomers is performed at the junctions
between adjacent monomers, after the repair of
gaps or protruding "whiskers" at these junctions
(440). This is in accord with the above-men-
tioned postulate of Watson (520). The intimate
connection between DNA maturation and pack-
aging is discussed in Phage Morphogenesis and
Cell Lysis.

DNA Recombination
Molecular recombination is inherent to, but

not necessarily essential for, T3 and T7 devel-
opment and is coupled to the most active phase
ofDNA replication (294,372). Recombination in
vivo requires gp3, gp4, gp5, and gp6 (225, 371).
Recombining DNA is fragmented before recom-
bination (415), and gene 6 exonuclease is neces-
sary for breakage and reunion of the fragments
in parental-to-progeny DNA recombination
(269, 315, 508). In the case of cloned DNA frag-
ments, recombination into T7 DNA does not
require gp4, gp5, and gp6 (51).

Biparental recombining T7 DNA molecules
adopt characteristic intermediate structures in
vivo (H- and Y-shaped) in a gp6-catalyzed re-
action in the absence of gp3 (510). These
branched structures are stabilized by gp5 (which
plays a role other than gap filling) and are con-
verted to linear recombinant molecules by the
action of gene 3 endonuclease I (510). The same
internediates as in vivo arise in extracts of T7-
infected cells (341).
Sadowski and Vetter (415) devised an in vitro

assay which measures recombination of exoge-
nous mature T7 DNA with endogenous T7 DNA
present in extracts of infected cells. These ex-
tracts promoted recombination as well as pack-
aging, so the recombinants could be assayed as
plaque-forming units. This biological assay was
complemented by a (less sensitive) physical as-
say (514) measuring the density shift of labeled
exogenous phage DNA. It became clear that
polar packaging (see Phage Morphogenesis and
Cell Lysis) simulates asymmetric recombination
in the biological assay (393), so Roeder and
Sadowski (399) developed mutually independent
and noninterfering in vitro T7 DNA recombi-
nation and packaging assays, proving that re-
combination is not inherent to in vitro packag-
ing. This new recombination system, designed
to promote recombination between exogenous
DNA molecules, has permitted at least two path-
ways of in vitro recombination to be distin-
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guished in appropriate mutant extracts: the en-
donuclease pathway, dependent on gp3, gp5, and
either host or phage (gpl.3) ligase and inhibited
by gp4 plus deoxynucleoside triphosphates, and
the exonuclease pathway, requiring gp6, inde-
pendent of ligase and gp3, gp4, and gp5, and
stimulated by deoxynucleoside triphosphates.
The wild-type in vitro pathway seems to com-
bine features of both these separable pathways
(399). As to enzyme requirements, the main
difference between the in vitro and the in vivo
reactions is the dispensability of gp4 and gp5 in
vitro. Roeder and Sadowski (399) suggest that
in vivo the physical separation of parental DNA
molecules (bound to different membrane sites)
may exclude biparental recombination so that
only replicating DNA can recombine. On the
other hand, according to the Radding-Meselson
model (199), the products of genes 4 and 5 may
be involved in DNA synthesis at nicks or gaps.
Electron microscopy of recombining T7 DNA
suggests that recombination is primed by an
invasion of single-stranded DNA into single-
stranded gaps at the replication fork (372).

In vitro recombination systems will probably
soon allow the complete fractionation, reconsti-
tution, and functional characterization of the
individual recombination factors.

PHAGE MORPHOGENESIS AND CELL
LYSIS

T3 and 17 Assembly
In vitro packaging. In vitro packaging is an

approach to resolve the steps of phage assembly
and is also a useful procedure for assaying in
vitro-manipulated DNA (see DNA Recombina-
tion). By heat-inactivating mature phage, Ser-
wer (451) obtained a T7 DNA-nucleocapsid
structure consisting of a unit length of T7 DNA
to which an empty phage head is attached. Sim-
ilar structures were seen in lysates ofT7-infected
celLs. In the in vivo structure the attachment
site was 7% from the genetic right end of the
DNA; the detection of DNA-head complexes
containing double-length DNA indicated that
head binding is involved in the ultimate DNA
maturation step (451).
Kerr and Sadowski (224) developed a com-

bined in vitro DNA recombination and packag-
ing assay. To study packaging uninfluenced by
DNA recombination, Kuemmerle and Masker
(255) introduced the use of gene 3, 5, and 6 triple
mutants. Coneatemeric DNA is packaged 10'
times more efficiently than unit-size DNA (295),
indicating that concatemer formation is a pre-
requisite for DNA packaging in vivo. In vitro
packaging depends on the presence ofthe follow-

ing components (413): proheads (400); the pro-
teins coded by genes 18 and 19, which are nec-
essary for head filling (224, 400); and the tail
proteins gpll, gpl2, and gpl7.

Fujisawa et al. (128, 319) developed an analo-
gous in vitro packaging system for T3 DNA.
Mature T3 DNA is converted to concatemers by
the combined action of gp3 and gp6 and pack-
aged into proheads in the presence of gp4, gp5,
and gpl9.
In vivo morphogenesis. The basics of virus

morphogenesis have been reviewed (55, 326).
Since the 1976 review of Hausmann (165), a
number of new papers dealing with T7 and T3
morphogenesis have appeared (117, 128, 207,
319, 400, 449, 452, 453, 534), of which we shaU
present a brief summary.
The proteins gp8, gp9, gplO, gpl3, gpl4, gpl5,

and gpl6 assemble into proheads, and in the
presence of gp18 and gpl9 plus DNA, packaging
is initiated. gp9 is a scaffolding protein necessary
for the fonnation of the packaging intermediate
but no longer present in the mature phage par-
ticle. Heads which have initiated, but not com-
pleted, DNA packaging are unstable and disso-
ciate into DNA and empty heads. The final
DNA maturation steps are synchronous with
the completion of packaging. Somewhere be-
tween prohead formation and the completion of
packaging, a host factor is active. Full heads do
not contain gpl8 and gpl9.

gpll and gpl2 attach to full heads, forming
the conical tail to which the tail fibers (gpl7) are
subsequently bound.
Mature phage heads consist mainly of gplO.

In addition, gpl4, gpl5, gpl6, and, probably,
gpl3 form a core which is surrounded by DNA
and extends into the tail. This core structure
might constitute an initiation complex during
capsid assembly. gp8 is located at the junction
of the phage head, core, and tail. gp7 and gp13
are not necessary for assembly, but they are
necessary for the infectivity of the mature par-
ticle. All maturation steps proceed without de-
monstrable proteolytic cleavage.
For the proportions of the individual T7 struc-

tural proteins within the mature phage particle,
see Hausmann (165).
The ultimate DNA maturation and packagig

steps are blocked in T7 gene 2 mutants (96, 267,
344). gp2 is essential for concatemer processing
(267, 344). This requirement appears to involve
inhibition of E. coli RNA polymerase by gp2 (as
described in Shutoff of Host and Class I and
Class II Phage Functions), inasmuch as gp2 is
replaceable by rifampin in vivo (344) and in vitro
(267) and as E. coli tsnB mutants which induce
a gp2-tolerant RNA polymerase also impose a
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barrier on late T7 DNA replication (see tsn
Mutations of Escherichia coli). On the basis of
published data it is conceivable that an immobile
gp2-RNA polymerase complex firmly attached
to promoter E (92% on T7 DNA [see Table 1])
serves as the landing base for the phage prohead.
This position corresponds exactly to that ob-
served by Serwer for the binding of empty heads
to T7 DNA (451). The contact point on the
prohead might be gplO. If this were so, many
isolated observations concerning the role of E.
coli RNA polymerase and phage gp2 and gplO
would fall into place. Host mutants unable to
support T7 DNA maturation, due to a disturbed
interaction between host RNA polymerase and
gp2 (96, 267), map in rpoB, the structural gene
for the RNA polymerase ,8 subunit. The E. coli
Y49 mutant selected for its inability to plate T7
0.7 (protein kinase)-negative mutants, imposes
a similar block on phage maturation (534, 535).
It is probable that the Y49 mutation, like the
BR3 mutation described by Studier, which is
also nonpermissive for gene 0.7 mutants (485),
maps in rpoB as well. An abortive packaging
reaction is also observed in S. sonnei sin (see
Influence of Host-Specific Factors on Virus Mul-
tiplication) which can be overcome by a muta-
tion in T7 gene 10 (513). sin may be yet another
rpoB mutation. If this explanation is correct,
then there is in fact only one host factor involved
in phage T7 maturation, the bacterial RNA po-
lymerase.

Gene 3.5 Product and True Lysis Enzyme
The role of the gp3.5 ("lysozyme"), an N-

acetylmuramyl-L-alanine amidase, has been de-
bated for several years (93, 127, 205, 210, 228,
484). This enzyme was initially thought to be
responsible for cell lysis (180, 205). Studier (484)
already pointed out that gp3.5 is expressed
among the class II genes whose products func-
tion in DNA metabolism and, furthermore, that
T7 gene 3.5 mutants are capable of inducing cell
lysis. Jensen and Pryme (210) demonstrated that
the standard test involving the liberation of ra-
dioactive material from diamino[3H]pimelic
acid-labeled E. coli cell walls (445) is no proof of
cytolytic potency in vivo and identified an ad-
ditional amidase activity in T7-infected cells.
The latter is responsible for cell lysis (210).
Miyazaki et al. (320) and Blair et al. (cited in
reference 25) showed that the true lysis enzyme
is encoded by a class III gene in T3 and T7
located somewhere between genes 17 and 19
(gene 17.5?).

gp3.5 functions in DNA metabolism and prob-
ably promotes the release of host and newly
made phage DNA and phage particles from the

cell membrane (460). It also seems to be engaged
in the shutoff of class II mRNA synthesis (303).

Since the designation "lysozyme" is associated
with active disruption of the cell wall and cell
lysis, it would be sensible to abandon this name
for the gene 3.5 product. To avoid confusion
between gp3.5 and gpl7.5, we propose to call the
latter the lysis enzyme.
The lysis enzyme destroys the cell and liber-

ates progeny phage particles. However, even in
its absence, cell destruction is bound to occur
eventually as the result of extensive phage-me-
diated cell damage (see Regulation of Gene
Expression).

INFLUENCE OF HOST-SPECIFIC
FACTORS ON VIRUS MULTIPLICATION
The study of bacteria which have lost or at-

tained the ability to support virus growth is
often very useful for defining the role of certain
bacterial elements in phage development and
complements the investigation of phage mu-
tants. In the course of this review we have men-
tioned a number of host proteins which are
active during different stages of the phage
growth cycle: the E. coli RNA polymerase and
thioredoxin as the most important of these fac-
tors; the dnaB protein, which is essential for late
T3 transcription; and an as yet ill-defined host
factor possibly involved in a late morphogenesis
step (534, 535). In the following section we will
discuss the roles of certain host factors in greater
detail.

tsn Mutations of Escherichia coli
The isolation ofE. coli tsnB and tsnC mutants

by Chamberlin (67) was of great importance for
T7 research. The further study of the tsnC mu-
tation led to the fundamental discovery that the
tsnC gene is the structural gene for thioredoxin
(trx) and that E. coli thioredoxin is a necessary
constituent of T7 DNA polymerase (see Enzy-
mology of DNA Synthesis).
tsnB mutations map within the structural

gene for the ,B subunit of E. coli RNA polymer-
ase (rpoB) (see review by Yura and Ishihama
[543]). Investigations of tsnB mutants and of
another rpoB mutant, E. coli BR3, which is
unable to sustain the growth of T7 gene 0.7
mutants (485), proved that E. coli RNA polym-
erase is indispensable not only for early phage
transcription but also for a late DNA maturation
step (see Structure of Replicating and Maturing
DNA) (96, 98, 267).

In an F+ background, nonpermissive for T7
reproduction (see below), the introduction of
strA mutations (affecting ribosomal protein S12)
allows T7 phage to overcome the F+ barrier. The
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original, nonpermissive state can be fully re-
stored by an additionally introduced rpoB (ri-
fampin resistance [rif]) mutation (62, 63). A
survey of rpoB mutants of different phenotypes
as to their effects on phage replication would
probably greatly further our understanding of
T7 virus-host interaction.

Interference by F Plasmids
T7 infection of host cells harboring an F plas-

mid is abortive, and T7 is, therefore, termed a
"female-specific" phage (286). After initial re-
sults according to which two adjacent F-factor
genes, pifA and pifB, determine an obstruction
of late T7 mRNA translation, a number of pa-
pers described membrane permeability changes
and a cessation of macromolecular syntheses
ahead of late translation (for references, see
Condit [78] and Hausmann [165]). Recently,
Remes and Elseviers (384) proved that adeno-
sine 5'-triphosphate leakage is not causally re-
lated to T7 exclusion. Despite numerous at-
tempts to solve this problem, the ultimate cause
of abortive development and the respective roles
of chromosomal, plasmid, and phage genes in
T7-infected F+ cells are not completely clear.
The F-plasmid genes responsible for T7 exclu-
sion were recently cloned (465) and shown to be
localized at the 38.3 position on the F-plasmid
map (353).

Schell et al. (429) and Williams and Meynell
(524) had reported an F-mediated exclusion of
T3, whereas Hausmann (163) and Studier (490)
failed to detect such a phenomenon. This dis-
crepancy is explained by the fact that the phages
used by the former authors were actually T7
strains (490). T3 can not be termed "female
specific." It is to be hoped that a comparison of
T3 and T7 will lead to the identification of the
phage function(s) which confer resistance and
sensitivity, respectively, to F+ pif gene action.

P1 Prophage
The impaired growth of T3 and T7 on P1-

lysogenic cells has been known for a long time
(122, 138, 268). Hausmann noted that gene
expression declines sharply from the early to the
late genes and that this drop occurs more rapidly
in the case of T7 (163).
Kruger and co-workers (251; D. H. Kruger, S.

Hansen, M. Reuter, and C. Schroeder, manu-
script in preparation) have shown that the block
on T3 and T7 development is caused by the
restriction enzyme EcoPl. However, no cleavage
of T3 or T7 DNA in Pl-lysogenic cells is ob-
served. It was proved that T3 (sam+), compared
with T7 and T3sam- mutants, has a superior
ability to express its genes and damage the cell.

Restriction endonuclease EcoPl molecules ap-
pear to bind to T3 and T7 DNAs and, similarly
to repressors, inhibit transcription. DNA cleav-
age is prevented by the phage ocr+ function.
Due to the expression of SAMase and the re-
sulting lack of SAM in the T3-infected cell, the
repressor-like binding of the P1 endonuclease is
less stable. T3 and T7 ocr- mutants are subject
to in vivo DNA cleavage and methylation by
restriction endonuclease EcoPl. The investiga-
tion of in vivo restriction of phages T3 and T7
by EcoPl has aided the dissection of the differ-
ent levels on which the sam+ and ocr+ functions
influence the interaction between DNA and re-
striction enzymes (see Interactions with the
DNA Modification and Restriction System of
the Host: Functions of Gene 0.3).

It is known that EcoPl and EcoP15 show
differences from the type I restriction enzymes
in their in vitro properties (11, 151, 542) and,
moreover, recognize a shorter nucleotide se-
quence (16, 152)-which should occur with a
higher probability within a given DNA mole-
cule-than does EcoB or EcoK (214, 264, 381,
468). It is still not clear which special feature of
T3 and T7 is responsible for the strong repressor-
like effect of the P1 restriction enzyme in vivo.
In contrast to the drastic in vivo effect of EcoPl
on T3 and T7 DNAs, phage lambda and the
plasmid pSF2124 DNAs are restricted by EcoPl
in vivo in the usual manner, which also obtains
for the restriction oflambda and ocr- derivatives
of T3 and T7 by EcoB and EcoK (no repressor
effect) (11, 254, 387). In addition, EcoPl-medi-
ated restriction of pSF2124 DNA can be com-
pletely overcome by ocr+ activity (387).

Antibiotic Resistance Plasmids and
Colicinogenic Plasmids

Some older papers describe the inhibition of
T3 or T7 phage growth by certain R plasmids
(18, 312, 519). In none of these cases was the
mechanism of exclusion (e.g., adsorption, abor-
tive infection through incompatibility, DNA re-
striction) elucidated.
Our preliminary studies on the influence of

the restriction endonucleases EcoRI and EcoRII
on the propagation of T3 and T7 in vivo show
that these restriction systems do not signifi-
cantly inhibit virus growth (Kruger, unpublished
data). This is not surprising in the case ofEcoRI,
since T3 and T7 DNAs have no recognition sites
for EcoRI (17, 260, 405, 421). The DNA M/R
system of plasmid R124, which has also been
termed EcoRIII (464) and which corresponds to
a type I restriction enzyme (S. G. Hughes, per-
sonal communication), does not restrict T3
phage, on account of the protective effect of the
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ocr+ gene function; T3ocr- mutants are re-
stricted and modified in vivo (D. H. Kruger, S.
Hansen, and L. S. Chermin, manuscript in prep-
aration).

Various colicinogenic plasmids interfere with
T3 or T7 growth not on the level of adsorption
or DNA restriction, but in an abortive infection
through incompatibility (146, 168).

Shigella sonnei D2 371-48
The infection of S. sonnei D2 371-48 by T7

phage ends abortively. Though DNA synthesis
begins as usual it is followed by extensive phage
DNA breakdown for which a suicidal (wild-type)
phage function ss8 is responsible, since T7ss7
mutants are capable of normal growth in the
Shigella strain. During infection of E. coli host
cells, the ss+ phage function is compensated by
a "suicide inhibition function" of the cell (sin'),
whereas S. sonnei D2 is sin (cp. 164, 165). The ss
marker was recently localized within the gene
coding for the major head protein (gene 10)
(513). The fact that a gene 10 mutation counter-
acts the suicidal behavior that normally occurs
upon infection of S. sonnei D2 (sin) suggests that
an interaction between a host function (sin')
and gplO of T7 may normally take place during
phage head morphogenesis. The abortive infec-
tion of S. sonnei D2 is caused by the block of
phage assembly; the degradation of T7 DNA is
a secondary effect (513). T3 growth is unper-
turbed on S. sonnei D2 (203); T3 thus behaves
as a "natural" ss- mutant. This is corroborated
by the apparent nonhomologies between the
gene 10 base sequences of T3 and T7 (89, 203).
Because of the facile discrimination between

ss+ and ss- T7 phage with the help of S. sonnei
D2, these markers have been used as experimen-
tal tools for in vitro DNA recombination and
packaging (294, 399, 413).

SPECIAL VIRUS-VIRUS AND VIRUS-
HOST INTERACTIONS

T3 as a Facultative Temperate Phage
Lysogeny of bacterial cells has been studied in

detail in the cases of such temperate phages as
lambda and P22 (19, 118, 181, 500). The most
important criteria for lyzogenization are the per-
petuation of prophage as part of the bacterial
replicating system and the ability of the lyso-
genic cell to produce progeny phage (prophage
induction) without reinfection. Phage-coded re-
pressor molecules prevent the expression of lytic
phage functions and are also responsible for the
superinfection immunity of the cells to homolo-
gous phage. Due to the intracellular state of the
phage, it is resistant to phage antiserum treat-
ment. In addition to lysogeny, there are other

less intimate virus-cell interactions, called pseu-
dolysogeny or carrier state, which have not been
strictly defined (19, 125, 174, 209, 278, 505, 518).

In the 1950s Fraser and co-workers (124, 125,
182) noticed that after infection by phage T3 of
E. coli cells starved in buffer, there is no imme-
diate phage replication and special so-called
late-lysing complexes are formed. In 1972 Kruger
et aL (252) observed that upon infection of
starved E. coli B cells, a fundamental difference
between T3 and T7 becomes evident. Whereas,
T7 induces a normal lytic cycle, the T3 genome
forms a complex with the cell. During slow cell
growth in minimal medium the phage genome is
coreplicated, and the daughter cells carry the
viral information. A transfer of T3-lysogenic
cells into rich medium causes induction of T3
prophage, and a complete lytic cycle is per-
formed. The facultative temperate behavior is
connected to the T3 SAMase (sam+) gene (243).
Apparently the T3 genome, which is nonmeth-
ylated due to SAMase action during the preced-
ing growth cycle (see Interactions with the DNA
Modification and Restriction System of the
Host: Functions of Gene 0.3), cannot be ex-
pressed in starved cells. In contrast, SAMase-
negative phage with methylated genomes (T7,
T3sam-) are expressed in starved host cells.
When, however, T3sam- phage are propagated
under conditions where DNA methylation is
prevented by preinfection with SAMase-profi-
cient phage, these unmethylated sam- phage
also establish a temperate interaction upon sub-
sequent infection of starved cells (243). It is still
a matter of speculation why the degree of meth-
ylation is so important for the behavior of T3 in
starved host cells but not in nornal cells. During
the lysogenic state, not even the leftmost portion
of the T3 genome is expressed (D. H. Kriiger
and C. Schroeder, unpublished data). Replica-
tion of the T3 prophage is thus under exclusive
control of the E. coli replication system. Incu-
bation of T3-lysogenic cells in minimal medium
plus T3 antiserum has no influence on the lyso-
genic state; i.e., reinfection (carrier state) cannot
be the cause for T3 perpetuation.

In contrast to authentic lysogeny, e.g., by
phage lambda, T3 lysogeny is unstable and not
maintained by phage-coded repressor action.
The absence of a phage repressor is also mani-
fested in the lack of superinfection immunity
(Kruger, unpublished data). Up to now it is not
clear whether T3 prophage is incorporated in
the E. coli chromosome or whether it is "inher-
ited" as a plasmid.
Thus, under special circumstances the nor-

mally virulent phage T3 can obey criteria of
temperence. We prefer to call this type of virus-
host interaction lysogeny to emphasize the abil-
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ity of the growing cell to lyse after induction of
provirus. A decision for a certain term would
demand a more detailed knowledge of the un-
derlying molecular processes. Possibly, intracel-
lular persistence would be more appropriate,
since the term lysogeny is traditionally associ-
ated with high stability and the expression of at
least one phage gene product, the repressor pro-
tein. In its dependence on the phage and possibly
the methylation degree of its genome, on the one
hand, and the physiological state of the host cell,
on the other, temporary T3 lysogeny provides
an interesting system for studying the regulation
of host "rescue" gene expression programs (e.g.,
the stringent control pattern [130, 329] or the
SOS pattern [527]) on the level oftranscriptional
control and their possible relation toDNA meth-
ylation. First indications of a link between dif-
ferentiation processes and DNA methylation
have also been reported for eucaryotic systems
(4, 75, 308, 501, 547).

E. coli transfection
The utilization of transfection studies on En-

terobacteriaceae for the solution of different
problems of molecular biology was recently re-
viewed by Benzinger (28). Progress in the trans-
fection of E. coli spheroplasts by T7 DNA has
been made by the groups of Benzinger (29, 176,
265) and Wackernagel (104, 448, 517). Ehrlich et
al. (119) studied the transfection of CaCl2-
treated E. coli by T7 DNA.
T7 DNA is infective in the double-stranded

and the single-stranded state (265, 297, 448, 517).
Transfection by T7 single-stranded DNA was
observed to depend on a functional DNA polym-
erase III in polAB cells, whereas transfection
with native T7 DNA was independent of host
DNA polymerase (448). The infectivity of dou-
ble-stranded DNA in vivo is significantly re-
duced by the recBC nuclease, probably by an
attack on the free ends of the linear duplex (29,
119, 448, 517). An in vitro erosion of the 5' ends
of these duplexes, i.e., the creation 3'-terminal
single strands, does not lower, but rather en-
hances, infectivity (104, 119,517), since these are
poorer substrates for the recBC enzyme, and,
furthermore, circularization of "terminally
eroded" DNA takes place within the cell, making
it completely insensitive to recBC digestion (104,
448, 517). However, when both strands of the
terminal redundancies have been degraded in
vitro, the DNA loses its infectivity. This is yet
another proof of the essentiality of the terminal
redundancies for DNA replication and matura-
tion (104).

Transfection efficiency of restriction-profi-
cient cells by T7 DNA is substantially reduced

compared with restriction-deficient cells, which
is explained by restriction of the entering DNA
molecule (119). The fact that the E. coli strain
used for propagating the phage from which the
DNA was extracted had no influence on the
degree of restriction (119) is explained by the
fact that ocr+ action prevented DNA modifica-
tion (245). During normal infection, incoming
DNA is protected against restriction by the ocr+
function (see Interactions with the DNA Modi-
fication and Restriction System of the Host:
Functions of Gene 0.3), but in the transfected
cell this phage function is, of course, expressed
too late. Interestingly, the 1,000-fold reduction
of transfection efficiency of T7 DNA by restric-
tion endonuclease EcoK (119) corresponds ex-
actly to the drop in efficiency of plating of
T7ocr- mutants when they are plated on E. coli
K (254).
Analogous to the fact that the DNA restric-

tion system of the host does not inhibit T7
growth upon normal infection but upon trans-
fection, the recBC nuclease seems only to inter-
fere with transfection, and not with normal T7
infection (517). Phage whose DNA goes through
a recBC-sensitive stage in their life cycle have
evolved protective measures against the enzyme
(28). This protection has been most thoroughly
elucidated in the case of the gamma protein of
phage lambda (216, 420). Sakaki (419) found
that besides lambda and other phages, T3 and
T7 are also capable of inactivating the recBC
nuclease and that inactivation depends on phage
gene expression. Wackemagel and Hernanns
(516) came to the conclusion that the anti-recBC
effect is caused by a late T7 protein. This protein
was isolated and partially characterized (349).
Unfortunately, no mutants in the corresponding
gene are known.

Problem of Heterologous and Homologous
Superinfection Exclusion

Hausmann et al. (171, 173) described the effect
that in homologous (T3 x T3 and T7 x T7)
crosses, the phage are compatible and both pa-
rental genomes are replicated and expressed, but
heterologous mixed infection by T3 plus T7 re-
sults in mutual exclusion and only 5% of the
miixed-infected cells produce both phage species.
Beier (Ph.D. thesis) found that upon simulta-
neous infection, exclusion only takes place in the
heterologous system, whereas upon superinfec-
tion, such an exclusion was postulated to occur
in heterologous as well as homologous infection.
The marker determining exclusion appears to
reside in gene 1 (phage RNA polymerase) (Beier,
Ph.D. thesis), indicating a role of the different
template specificities of the phage RNA polym-
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erases. Superinfection experiments with T3- and
T7-preinfected cells confirmned the role of gene
1 (299), and the results of McAllister and Barrett
(Table 1 of reference 299) let us conclude that
gene 0.3 cannot be involved to any extent. Ben-
basat et al. (27) claim that after T7 infection, all
superinfecting phage are excluded, since they
adsorb but do not inject their DNA; this effect
is supposed to be completely reversible by chlor-
amphenicol; i.e., it is supposed to require protein
synthesis by the first infecting phage. Hirsch-
Kauffmann et al. (193) express the most extreme
opinion. According to their results, T3 and T7
exclude each other in homologous as well as
heterologous co- and superinfections. Only one
phage genome should be able to enter the cell
and block the entry of any other phage in a step
subsequent to adsorption. This exclusion is al-
legedly mediated by gene 0.3 (called "M" gene
by these authors [see Other Functions Ascribed
to Gene 0.3]), without a requirement for RNA
or protein synthesis (no chloramphenicol effect)
directed by the excluding virus. Due to the pos-
tulated exclusion, no ultraviolet multiplicity
reactivation of T3 and T7 should occur (193);
however, multiplicity reactivation has been ob-
served by other authors (45, 46).
As contradictory as these data are (Exclusion

only on superinfection or also in coinfection?
Exclusion only between heterologous or also be-
tween homologous phage? Role of gene 0.3 or
gene 1 for exclusion? Necessity of gene expres-
sion of the first phage for the exclusion of all
following phage?), they are as a whole opposed
to quite self-evident facts of the molecular biol-
ogy of T3 and T7. It is a well-known fact that
amber mutants (23, 166, 483) and temperature-
sensitive mutants (253, 442) efficiently comple-
ment each other in coinfected cells and that
complementation is also observed in heterolo-
gous mixed infections (168). Obviously, comple-
mentation depends on the expression of at least
two different phage genomes in the cell. The
same is true for recombination experiments. Re-
combination frequencies in homologous crosses
are normal (23, 483, 485, 494, 508). The recom-
bination frequencies in heterologous T3 x T7
crosses are indeed lower than in homologous
crosses (171; Beier, Ph.D. thesis), but the reason
for this is that recombinants resulting from one
(or any uneven number of) recombinational
event are not viable and therefore not detecta-
ble, because recombinant DNA molecules carry-
ing nonidentical terminal "redundancies" cannot
form concatemers (22, 89, 104). (During experi-
ments leading to the establishment of recombi-
national maps of T3 and T7, reproducibility is
improved if phage infection is synchronized by

applying KCN. This measure has no influence
on the expression of gene 0.3 or 1.)
Brautigam and Sauerbier (40) found a gene

dosage effect depending on the multiplicity of
infection of ultraviolet-irradiated T7 gene 1 mu-
tants. Other authors found that net T3 DNA
synthesis increases with the multiplicity of in-
fection by T3 wild type (W. Mann, H. Musielski,
I. Scheiber, and I. Laue, Abstr. Commun. Annu.
Meet. Biochem. Soc. GDR, 11th, Halle/Saale,
German Democratic Republic, 1979, B3). In con-
nection with other experiments, Kruger and co-
workers have shown that, for example, after
preinfection of E. coli with T3 gene 4 or gene 6
amber mutants, subsequently infecting T3sam-
normally replicates (243) and that preinfection
by ultraviolet-irradiated T3 or T7 phage allows
normal growth ofT3/R7 and T7/D111 (245) and
T3 and T7 wild types (Kruger, unpublished
data). In all these cases a normal expression of
gene 0.3 (and in the case of the amber mutants,
also of gene 1) of the preinfecting phage takes
place. All these results, including the comple-
mentation and recombination mapping data, im-
ply that homologous or heterologous co- or su-
perinfection immunity does not exist.

Since all experiments relating to this matter
have been performed with phage mutants or
ultraviolet-irradiated phage, there is, of course,
the possibility that some kind of exclusion exists
between wild-type phage. If there is a certain
degree of mutual exclusion in the case of heter-
ologous T3 x T7 crosses (171, 173), then it is
certainly not related to gene 0.3 function.
The arguments given above hold only for si-

multaneous infection or for superinfection in-
volving a delay of maximally 5 min (370C). It is
evident that a secondary infection after a longer
lapse oftime is bound to be unsuccessful because
the processes in the infected cell are out of
control.

Interactions with Eucaryotic Systems

Prompted by the spectacular finding of Merril
and co-workers (134, 311) that Xpgal induces
galactose-1-phosphate uridylyltransferase in gal-
actosemic human cells and by successful phage
transduction of E. coli genes into plant cells
(101), the interactions between phage and eu-
caryotic systems attracted the interest of molec-
ular biologists (cp. 309, 310).
Up to now, neither complete bacteriophage

reproduction nor stable integration of whole
phage genomes in higher eucaryotic cells has
been described. However, the induction of plant
tumors by the Ti plasmid of Agrobacterium
tumefaciens represents a natural case of stable
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incorporation of bacterial genes in eucaryotic
cells (273, 428, 540).

After infection of Hordeum vulgare proto-
plasts by T3, the phage genome is expressed to
a limited extent (54). Regarding the fate of T7
DNA after experimental introduction into ani-
mal cells, there are conflicting results: Leavitt et
al. (266) demonstrated the uptake of T7 DNA
into the nucleus of Syrian hamster embryonic
cells and its persistence throughout several cell
division cycles; Kao et al. (215), in contrast,
observed rapid digestion of T7 DNA after its
entry into human skin fibroblasts. These and
other results (see reference 139) invite the spec-
ulation that, analogous to the situation in bac-
teria (11, 37, 504), restriction systems with the
ability of degrading foreign DNA also exist in
eucaryotic cells (47, 416). Maybe these restric-
tion systems are not yet fully expressed in em-
bryonic, compared with adult, cells.

Richter et al. (389) detected a limited tran-
scription and translation of T3 and T7 DNA in
a cell-free system of yeast mitochondria. That
phage DNA expression is not confined to the
procaryote-like mitochondrial system was dem-
onstrated by Anderson et al. (9), who found that
T3 and T7 early mRNA's are translated on the
80S ribosomes of a mammalian cell-free cyto-
plasmic system. The translation efficiency of
gene 0.3 mRNA is higher when using RNase III-
processed mRNA than with polycistronic RNA.
Capping of mRNA (modification of the 5' end
which facilitates translation of eucaryotic
mRNA) seems not to be necessary for phage
mRNA translation (9).
The purpose of these studies is twofold: first,

they may help to illuminate the differences and
correspondences in the molecular biology of pro-
and eucaryotes, and, second, these studies could
be of practical value for future experimental
gene transfer with recombinant DNA from pro-
to eucaryotes.
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